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Executive Summary 

A novel statistical methodology has been designed and investigated. It is aimed at quantification of uncertainties 
embedded in stress/strain prediction used for structural performance assessment of turbine engine blades. The 
developed methodology relies on Bayesian belief network representation of existing model-based inference 
schemes for stress/strain prediction that use both analytical/numerical modal information and experimental 
forced-response data. It accounts in a statistically consistent fashion for the evidence provided both at the input 
and output levels of the model. The need to incorporate the evidence at the output level is not unique to the 
considered problem, so the results can be applicable to other fields, such as system identification and model 
calibration. In addition, various sources of uncertainty were analyzed, namely component geometric and 
material properties, sensor-induced errors, data-processing assumptions and parameters. Simulation of 
uncertainty propagation and sensitivity analyses were conducted to identify the main contributors to uncertainty 
and provide the guidelines for problem downsizing, both computationally and in terms of the corresponding 
Bayesian network complexity. Assessment of the proposed statistical framework and identification of its 
benefits and drawbacks were performed using experimental data for plate structures obtained using the industry- 
standard testing procedures employed for turbine engine blade analysis. The developed procedures and the 
improved modeling tools provide a means for uncertainty estimation and reduction, which leads to more 
accurate stress predictions, as well as guidelines for improvement in instrumentation strategies (e.g., reduction 
of instrumentation and number of sensors without compromising the fidelity). 

Overview of the original proposed tasks and their completion 

Task 1: Model development and validation 
The reduced order models for the blade and disk assembly have been developed. A simple model based on 
analytical beam representation of individual blades has been be prepared and used for initial statistical analysis. 
Upgrades to the model will be then completed to include complex blade geometries and higher order effects. 
The model has been validated against detailed FE models of bladed disk assemblies. The validated reduced 
order models have used to construct stress uncertainty estimation models. The detailed FE models have been 
used as a reference to check for modeling accuracy (see Appendix for full results) 

Task 2: Evaluation of uncertainty sources and their sensitivity to uncertainty 
The models developed during Task 1 have been used to identify and classify the sources of uncertainty. The 
task will be supported by an extensive literature search, aimed also at characterizing or eliminating parameters 
affected by uncertainty. The sensitivity of the sources of uncertainty on stress predictions has been evaluated 
(see Appendix for full results) 

Task 3: Development of uncertainty evaluation process 
The objective of this research has been to quantify the level of accuracy within a standard model-based 
estimation scheme for the calculation of the maximum vibratory response in dynamic structures. For any given 
physical system being investigated, this inference technique relies on two essential contributors: an analytical 
model of the system and actual experimentation, both of which are inevitably affected by uncertainties and 
errors in their results. In order to characterize the statistical interaction between these two contributors and 
assess the predictive accuracy of the estimation procedure, a structured statistical framework has been 
developed by means of a Bayesian-network representation of the inference scheme itself. This approach allows 
for multi-directional propagation and updating of uncertainty, as well as knowledge infusion from available 
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sources of information at various levels of the analysis. In order to construct the Bayesian network, a simulated- 
experiment environment equivalent to the procedures used for actual systems was created, where equivalency in 
this setting implies comparable levels of results' variability and correlation between the physical system and its 
model. Sensitivity analyses conducted through direct propagation of uncertainty were utilized to identify key 
uncertainty sources to be included in the network, whether they were the true causes of the variability observed 
in the actual experiments or a suitable set of surrogate explanatory ones. Finally, uncertainty sources associated 
with system/model correlation, model parameters, and measurement sensors were modeled probabilistically and 
integrated in a unified fashion within the network. 

The methodology was tested on two structures, a one-dimensional beam and a three-dimensional plate, with 
results that proved to be promising in light of the assumptions embedded in the process. In fact, in the presence 
of a limited set of actual test data upon which it may be difficult to draw strong statistical conclusions, the 
developed Bayesian approach was shown to provide a means to quantify comprehensively the uncertainty in 
the response estimates based simply upon additional simulated experiments. The level of confidence in the 
estimated quantities can be assessed and quantified more satisfactorily upon the inclusion of real information 
from the sensors, a task that the Bayesian-network approach allows to be performed coherently. 

Summary of Specific Findings and Conclusions 

The scope of this work lies within the realm of methodologies employed in building analytical models for the 
purpose of system performance prediction. Among the host of potential models, two main distinct categories 
can be identified: physics-based models and data-driven ones. On the one hand, the former are built upon first 
principles, and their verification and validation are usually executed as a separate task of reconciliation with 
appropriate test data. On the other hand, the latter consist of data-based meta-models which may not be derived 
from physics-based considerations. This second type of system representation lends itself easily to statistical 
validation, assuming that a large set of relevant data is available, which might or might not be the case. 
In the presence of these distinct engineering approaches, a need has been identified for a way to integrate 
experimental and model information capable of addressing the intermediate scenarios and quantifying any 
residual uncertainty, thus combining the best features of both approaches by relying on the physics-based 
models and yet allowing for a statistically rigorous incorporation of the evidence into the model. In the field of 
system identification the problem of model-to-data correlation has been addressed both in a deterministic and a 
statistical fashion. The contribution of the present research consists of investigating the use of Bayesian 
networks as a possible means to bridge the gap between physics-based and data-driven approaches and applied 
to a particular structural-dynamics application where model and experimental data are used concomitantly for 
the purpose of response prediction. In this context, the Bayesian network itself can be viewed as a statistical 
surrogate model of the prediction scheme, relating the uncertainty embedded in the estimates to the changing 
level of available knowledge. 

The high complexity of certain structural systems makes the identification and characterizationof the sources of 
uncertainty embedded in them an involved task which may result in a rather large state space to be modeled 
within a statistical framework such as a Bayesian network. Therefore, sensitivity studies and network Gaussian- 
linear statistics were adopted to address the dimensionality issue as well as manage the computational burden. 
Sensitivity analysis was used to downsize the Bayesian network to its essential elements by means of 
pinpointing key explanatory factors of uncertainty and discarding quantities responsible for weak causal 
relationships. Case studies on these scenarios demonstrated that the presence of such quantities causes 
unnecessary additional topological complexity and may hamper the effect of evidence infusion because of 
localized insensitivity of the given network. 

■ 
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The assumption of linear Gaussian cause-effect relationships permits, instead, to solve for uncertainty 
quantification in closed form, with consequent computational savings. As with any modeling technique, 
however, the analytical simplifications do bound the range of applicability and validity for the proposed 
framework. More specifically, it may become impossible to model non-linearities using a linear network if the 
noise level introduced by the linearization process and due to underfitting issues outweighs the impact of any 
other uncertainty source; or the quantities being modeled may be highly non-Gaussian so that the first two 
statistical moments become insufficient to fully characterize their probabilistic nature. This loss of accuracy and 
information could be significantly reduced by appropriately transforming the original variables, derived from 
physics-based considerations, and consequently using the results of these transformations to construct the 
Bayesian network. As an example, the logarithmic transformation was suggested because it eliminates the 
source of non-linearity from the estimation product formula, and may prove beneficial if the gain in accuracy 
exceeds the consequent loss of probabilistic information due to treating the newly log-transformed quantities as 
Gaussian random variables. The use of other transformations (e.g., the Rosenblatt transformation or variations 
of it) could be envisioned to address this last issue. 

The effect of evidence infusion led to the discovery of interesting behaviors of the network. Evidence in the 
form of peak frequency and peak amplitudes was chosen for this type of model-based response prediction in 
accordance with the existing industrial practice. The effectiveness of the propagation of evidence at a node was 
observed to be dependent on two important factors: the causal strength of connecting links, and the level of 
separation between the observed node and a given queried one. As a result of this evidence attenuation, both 
pieces of measured information on peak frequency and peak response amplitudes were found to be essential for 
a satisfactory update of the entire network. Furthermore, even with multiple inclusions of evidence, the network 
was not always able to pinpoint the assumed true state of all the nodes, even though its updated state was indeed 
consistent with the infused information. This behavior is deemed to originate primarily from the issue of 
solution non-uniqueness typically encountered when addressing inverse problems (See Appendix for more 
details) 

Impact of the research 

The proposed research provides the means for a time and cost effective analysis and interpretation of the test 
data, by including statistic and uncertainty measures inherently with the models. The outcome of the conducted 
approach is multifold. First of all, the developed procedure facilitates the identification of vibratory modes and 
provides information regarding their variations as a result of changes in the most influential parameters (rotor 
speed, operating temperature, manufacturing tolerances on blades, material properties, etc.). Correct modal 
identification is the required prerequisite for correct estimation of SAFs and the prediction of the durability of 
the blade. Moreover, the estimation of uncertainty on estimated and test data facilitate the identification of 
"rogue blade" responses, caused for example by mistuning phenomena, and to quantify blade-to-blade as well 
as engine-to-engine variations. The statistically-based model could also be used to isolate statistical outliers, 
corresponding for example to the stress levels in highly defective or damaged blades. Future developments of 
the methodology could therefore be coupled with damage detection techniques for turbine bladed-disk. 
Furthermore, the analysis of the sensitivity to sources of uncertainty can naturally lead to improved testing 
procedures, whereby the test articles can be exposed to a statistically significant portion of all the controllable 
influence parameters (e.g. rotor speed, operating temperatures). Finally, the developed modeling approach could 
be employed as a guide to the reduction of the number of sensors required for durability estimations, and to the 
improvement of current sensor placement strategies. 
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Appendix A 

PhD Thesis that directly resulted from the sponsored research and contains all the major findings 
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SUMMARY 

The dissertation focuses on estimating the uncertainty associated with stress/strain prediction 

procedures from dynamic test data used in turbine blade analysis. An accurate prediction of a 

physical component's maximum response levels occurring during in-field operating conditions is es- 

sential for evaluating its performance and life characteristics, as well as for investigating how its 

behavior critically impacts system design and reliability assessment. Currently, stress/strain infer- 

ence for a dynamic system is based on the combination of experimental data and results from the 

analytical/numerical model of the component under investigation. Both modeling challenges and 

testing limitations, however, contribute to the introduction of various sources of uncertainty within 

the given estimation procedure, and ultimately lead to diminished accuracy and reduced confidence 

in the predicted response. 

The objective of this work is to characterize the uncertainties present in the current response 

estimation process and provide a means to assess them quantitatively. More specifically, a statis- 

tical methodology is proposed that is based on a Bayesian-network representation of the modeling 

process which allows for a statistically rigorous synthesis of modeling assumptions and information 

from experimental data. Furthermore, such a framework addresses the problem of multi-directional 

uncertainty propagation and permits the inclusion within the analysis of newly available test data 

that can provide indirect evidence on the parameters of the structure's analytical model, as well as 

lead to a reduction of the residual uncertainty in the predicted quantities. 

As part of this research, key sources of uncertainty are investigated and their impact upon 

system response estimates is assessed through sensitivity studies, the results of which are utilized 

for the identification of the main contributors to uncertainty to be modeled within the developed 

Bayesian inference scheme. The appropriate Bayesian network is constructed using data generated 

in a simulated experimentation environment, statistically equivalent to specified real tests, and is 

then infused with actual experimental information for the purpose of explaining the uncertainty 

embedded in the response predictions, as well as quantifying their inherent accuracy. 
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CHAPTER I 

INTRODUCTION 

1.1 Overview 

This research focuses on the estimation of the vibratory response of dynamic structures, 

with attention to turbine engine bladed disks. The inevitable presence of inherent sources 

of uncertainty within any estimation technique negatively impacts the accuracy and the 

confidence level associated with a system's estimated response, thus limiting how well its 

performance and life characteristics can be assessed. Broadly speaking, uncertainties and 

errors originate primarily from two sources: experiments and system analysis. The objective 

of this work is the formulation of an integrated statistics-based framework built upon the 

information provided by the aforementioned contributors and capable of assessing the level 

of uncertainty therein embedded. Ultimately, such framework is aimed at improving the 

estimation of the maximum stress levels in structural systems. 

1.2 Motivation 

Extensive studies have been conducted on bladed-disk assemblies as their performance 

critically affects the reliability of gas turbines and aircraft engines. Typically, tests are 

conducted to measure the vibratory response of blades or other components under given 

load conditions, where the measurements are then used in conjunction with a predictive 

model [76] to infer the critical response levels, and to help in the assessment of a system's 

fatigue life and failure modes. Measurement data are used to calibrate analytical/numerical 

models, and to investigate how accurately they can predict a physical system's behavior, 

which is a major point of interest within the realm of design as well as for model verification 

and validation [84]. The accuracy of any response inference technique is limited by a num- 

ber of factors concerning the physical system, its structural modeling, and the test setup. 

On the one hand, sensor-based constraints (e.g., type of sensors, measurement inaccuracy, 

bandwidth, and range of operability), validity of measurement data obtained in a controlled 



test environment (rather than in field conditions), as well as the lack of knowledge of the 

physical system's true state (e.g., geometric tolerances or unknown boundary conditions), 

all contribute to the introduction of uncertainty into the measured vibratory response. On 

the other hand, system models are also affected in their predictive capability by their in- 

herent assumptions and simplifications. 

In this realm of modeling, a key aspect for disk assemblies is represented by system 

complexity associated with the possibly high number of blades comprising a single disk. 

Ideally, blades are equal to one another, but perfect symmetry is never attained because of 

manufacturing discrepancies, which can be further exacerbated by different in-field levels 

of wear and tear occurring on each blade. As a result, disk assemblies may experience the 

emergence of localized dynamic phenomena (i.e., "rogue" blade responses [9, 14, 18, 36]) 

characterized by vibratory stress levels higher than the average overall response. The ability 

to meaningfully evaluate these critical conditions is limited by instrumentation-based con- 

straints as well as analytical/numerical challenges. On the one hand, financial reasons and 

technical limitations may determine the number of conducted experiments as well as their 

test set-up and data analysis. A subset of blades is usually instrumented and the measure- 

ment locations rarely coincide with the regions of maximum response levels, thus requiring 

the use of analytical models to perform an extrapolatory assessment of the system's be- 

havior. On the other hand, the loss of structural symmetry in a disk entails significant 

computational costs, associated with the necessary modeling of the entire disk and all the 

blades, which often call for a trade-off with respect to model fidelity. 

The aforementioned issues, technical limitations and modeling challenges all cause un- 

certainty and error to be embedded in the estimation of the true response of any disk 

assembly, as well as other structures. As a consequence, system assessment needs to be 

robust from a probabilistic viewpoint. A statistics-based use of measurement data and ana- 

lytical approaches can help quantify uncertainties, assess their propagation and interaction, 

as well as provide meaningful insight on system-design robustness in terms of quantifiable 

uncertainty bounds on a system's predicted behavior. 



1.3    Literature Review 

Following is an overview of various research efforts and approaches addressing the is- 

sues of system complexity and uncertainty assessment for structural systems, both at the 

analytical and experimental level. Although some emphasis has been given to the field of 

turbomachinery analysis, many of the issues, concepts and techniques herein discussed have 

sprung from or found applicability in other structural systems and applications. 

1.3.1    Structural Analysis of Bladed Disks 

Modeling and analysis of turbine engine bladed disks can be computationally intense 

depending on the required level of detail. Given the geometric and dynamic periodic nature 

of such systems, the use of cyclic analysis [59, 81, 98] on a limited number of substructures 

can prove to be very efficient, but it can become impractical to use when localized phenom- 

ena are of interest (e.g., localized dynamics due to differences among the substructures). 

In such instances, analysis of the full structure may be instead necessary due to the loss of 

cyclicity. The need for extensive simulation, however, calls for a trade-off between accuracy 

and computational performance. In light of these analytical and computational challenges, 

several approaches have been presented in the literature to reduce the computational cost 

while retaining an adequate level of detail. 

The techniques available range from model order reduction via spring-mass-damper sys- 

tem representation to reduced finite-element cyclic analysis. In [35, 36, 90, 105, 106], a 

disk sector is described via an equivalent set of lumped masses where springs simulate 

blade-to-blade coupling, while dashpots account for energy dissipation phenomena (e.g., 

aerodynamic damping). It has been demonstrated that lumped-parameter models of disk 

assemblies are able to spot the presence of localized dynamic phenomena [105], but a more 

detailed analysis may be required to establish a correlation between the dynamics of the 

lumped system and the actual assembly. An improvement with respect to lumped systems is 

to model the blades as continuous media with simpler geometry (e.g., beams or plates) [64], 

whereas other modeling techniques rely on finite-element solutions. Proposed in [52, 78] is 

a technique to generate reduced-order models of disk assemblies based on component-mode 



approaches [8, 48], where a single blade and the whole rotor are the two modeled com- 

ponents, and where the overall dynamic behavior of a single blade is reconstructed as the 

combination of a disk-induced static motion and an elastic motion for a fixed-free blade. 

This approach lowers the computational cost by downsizing the number of finite element 

degrees of freedom while maintaining the key characteristics of the modes. Model reduction 

through component modes has been further extended to other turbomachinery investigation 

problems (e.g., prediction of forced-response in early-stage engine design [87, 88], analysis 

of shrouded assemblies [9], or assessment of centrifugal stiffening effects [72]) and is at the 

core of the widely accepted computer code "REDUCE" [10, 11]. 

The spectrum of available modeling techniques (reduced or not) for turbine engine as- 

semblies is quite varied. All of them, however, are affected by limitations in their capability 

to accurately capture the physical phenomena under investigation. The results obtained via 

numerical/analytical analyses have an inherent inaccuracy which ought to be quantified in 

order to properly predict a system's performance. 

1.3.2    Uncertainty in Engineering Applications 

Understanding uncertainty is important when assessing any physical system/phenomenon 

through analytical/numerical modeling. Despite the deterministic nature of a physics-based 

model, the results obtained from it ought to be treated in a probabilistic manner because 

of the uncertainty associated with the model's input parameters, structure and predictive 

accuracy, which also needs to be assessed in a statistical manner. 

Uncertainties can be broadly grouped into two main categories: physical uncertainties 

and model-related ones. The first group originates from the difference between a physical 

system's true state and its model representation, as well as from the discrepancy between 

actual and nominal testing conditions, while the second stems from the limited fidelity 

and approximations of the structural model and analysis. Physical uncertainties include, 

among others, manufacturing variations, sensor calibration and sensitivity, measurement 

noise, gauge non-linearities, sampling rate and data processing algorithms. Modeling un- 

certainties, instead, stem from simplifications in the model geometry, inexact boundary 



conditions, finite-element discretization level and element formulation, and any other hy- 

potheses underlying the numerical representation. This categorization is not the only one 

proposed in the literature and may vary in interpretation as well as in the level of detail 

and subcategorization [15, 24]. Another classification distinguishes between irreducible un- 

certainty and epistemic one [92]. The former is related to the very random nature of reality, 

whereas the latter originates from the lack of knowledge about a physical system being 

analyzed, and can be reduced by acquiring more information about it. 

Of particular interest in the field of turbomachinery is the problem of randomness in 

blade geometry and material properties (and consequent disk mistuning) induced by manu- 

facturing irregularities. In order to compute the system's response and address its inherent 

random nature, various approaches have been considered. Stochastic finite-element meth- 

ods have been developed to address the coupled issues of uncertainty (in the system and 

its surrounding environment) and geometric/topological complexity. The deterministic dis- 

cretized physics formulation is made stochastic by randomizing, in accordance with an 

appropriate probabilistic uncertainty framework, some of its constituting elements (e.g., 

the mass matrix, or the external loading function) used to generate a system of random 

equations. These equations are solved using an extensive host of techniques that has been 

developed throughout the past decades [33, 34, 57]. Techniques based on the Monte Carlo 

simulation approach [69] are widely used [40, 91] to propagate uncertainty directly from 

inputs to outputs, but they can be computationally expensive. For this purpose, principal 

component analysis can be adopted to downsize the set of random variables to a mean- 

ingful subset before employing Monte Carlo simulations [14], or, thanks to its ability to 

represent any type of probability distribution, the polynomial chaos technique [90] has been 

suggested as an analytical alternative to numerical simulations for the computation of the 

statistics of a system's response. Other techniques like response surfaces and FORM/SORM 

(First/Second Order Reliability Method) have been utilized to replace, when possible, the 

intense computations with fast-running approximations. Response surfaces have been used 

largely to construct surrogate models finking system inputs to outputs, whereas FORM 

and SORM have been employed to numerically solve multi-variate probability integrals 



over complex domains of integration. In [107], however, the former two techniques have 

been shown to be unsatisfactory even for the simple nonlinear Duffing oscillator, indicating 

that a probabilistic characterization of uncertainty might not always be well suited to de- 

scribe nonlinear systems exhibiting complex (e.g., bifurcating) dynamic behavior. 

In quantifying uncertainty, probabilistic methods have been largely used especially to 

characterize the variability in a system's properties. As done in many stochastic analyses, 

these techniques involve the assignment of probability functions for the uncertain properties 

followed by their propagation to determine the probability distributions at the output level. 

Needless to say, the results obtained via these approaches are meaningful as long as the 

selected uncertainty models are sound with respect to the available measurement informa- 

tion, in terms of both the selected distribution type as well as the values of its parameters. 

In order to address the limitations of the probabilistic approaches in quantifying the 

variability in a system's parameters and inputs, research has progressed towards a partic- 
■ 

ular group of techniques consisting of the so-called possibilistic methods.   In contrast to 

the probabilistic methods, no probability distribution is assumed for the given parameters. 

Conversely, the uncertainty in those parameters is represented in terms of a range of possi- 

ble values. Belonging to this category are methods based on interval arithmetic [68], affine 

analysis [23], fuzzy analysis [113], and information-gap theory [7, 96]. 

Analysis based on interval arithmetic is conceptually straightforward and tends to be 

computationally cheap in terms of the needed number of runs. It suffers, however, from 

the problem of overestimating the level of uncertainty in the system responses due to the 

fact that no information about the interdependencies existing among the various uncertain 

system quantities is retained in the algebraic manipulations. One way to overcome this 

drawback is to make usage of the affine analysis, through which narrower uncertainty bands 

can be determined and sensitivity relationships between inputs and outputs can be estab- 

lished in order to identify the stronger uncertainty drivers. Both approaches guarantee that 

all the worst-case scenarios of a system's response are captured as they all fall inside the 

computed uncertainty bands. This feature makes interval-based approaches more appealing 

than the probabilistic techniques, especially in terms of design for robustness. In [31, 83], 
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the use of interval analysis has been demonstrated for the evaluation of the uncertainty 

bounds on a system's eigenfrequencies associated with material and geometric uncertain- 

ties, whereas in [62] real affine analysis has been extended to the complex plane and tested 

on a simple lumped-element system, while its successful applicability to large complex sys- 

tems is still an object of research. 

Fuzzy analysis builds upon interval arithmetic where various a-cuts are considered for 

the uncertain quantities. Like for interval analysis, fuzzy analysis also experiences the 

problem of dependency, but has been proposed for structural uncertainty problems [53, 54] 

because it offers a way to address the concept of vague and imprecise knowledge with 

no assumption needed on the random nature of the uncertain parameters. Finally, the 

information-gap approach becomes useful when probabilistic uncertainty models cannot be 

constructed due to a scarcity in the measurement data and/or knowledge about the model 

form. Since the method can build upon limited information, it is considered to be well 

suited for design processes which emphasize system robustness over performance. This has 

been shown in [96], where information-gap models of uncertainty sources in a structural 

system are employed to construct a measure of robustness to be maximized in the presence 

of competing sources of variability. The potential capabilities of this method are extended 

further in [7] which suggests the possibility of linking uncertainty models with possible 

decision-making schemes so as to improve understanding and usage of the newly acquired 

information. 

In [94] a distinction is drawn between system input/parameter uncertainties and mod- 

eling uncertainty, exclusively in terms of what their proper characterization should be. In 

fact, while the former may be treated by modeling each of the system quantities as a random 

variable, modeling uncertainty stems from the simplifications embedded in the analytical 

framework and its consequent discrepancy with the physical system, which no change in the 

system inputs or parameters may be able to eliminate. Therefore, it is argued that para- 

metric probabilistic approaches cannot properly describe this source of uncertainty because 

of its insensitivity to system inputs and parameters. A non-parametric methodology, based 

on random-matrix theory, has been suggested, instead, as a valid alternative [93, 94] to 



quantify and reduce modeling uncertainty. Furthermore, from a practical standpoint, the 

use of non-parametric probabilistic methods has also been investigated as a way to address 

the problem of dimensionality associated with the large number of parameters necessary 

to fully characterize complex systems (e.g., a blade's random geometry). The size of the 

problem is reduced by mapping the physical sources of randomness into a set of control 

parameters instead of modeling them explicitly within a probabilistic scheme. To this end, 

in [16], a non-parametric approach has been implemented which uses so-called dispersion 

parameters to control the variability within the bladed-disk's discretized equations of mo- 

tion (i.e., the system matrices). Another application of the method is presented in [17], 

where it has been employed to inversely assess the manufacturing tolerances required to 

limit the mistuned response of an industrial fan. 

The need for a large database to quantify uncertainty has also called for a maximal usage 

of historical databases of analyses and tests, which are especially useful when in-field condi- 

tions of interest cannot be reproduced. In [39, 40, 43], the uncertainty embedded in a linear 

system's model is assessed using a database of similar structures. Covariance-based metrics 

to quantify modeling uncertainty are derived in terms of uncertain modal quantities (i.e., 

natural frequencies, modal mass, stiffness and damping), which are normalized and made 

independent of geometry and frequency scales so that any lacking data can be borrowed 

from a database of generically related structures. The modeling uncertainty of a particular 

system can then be obtained by appropriate inverse rescaling. The use of modal quantities 

is deemed to be useful as their variability can describe the combined effect of several sources 

of uncertainty (e.g., measurement error associated with indirect measurement of the modal 

quantities of interest, or experimental errors due to tests being conducted on components 

rather than on the full assembly [39, 43]). The use of experimental data from structures 

other than the one under investigation is also beneficial as it accounts for the uncertainty 

associated with the physical components (e.g., product/manufacturing variability, or mea- 

surement scatter across multiple experiments when only data from one test are available). 

Of course, as more system-specific information is available to replace the generic data, the 

modeling uncertainty can be computed with higher confidence, where it has been shown 



that it reaches a minimum if computed using only structure-specific data sets [42], thus 

indicating that modeling uncertainty is assessed in a conservative sense. As done for lin- 

ear structures, this uncertainty-quantification approach has been extended successfully also 

to nonlinear structures [41, 44] (via the use of singular-value decomposition and principal 

components), and has been implemented in the commercial package NASTRAN [45]. 

The use of Bayesian statistics has become widespread in several fields of study, thanks 

also to its appealing abductive property which facilitates the identification of the likely root 

causes for observed events. Moreover, its use allows the incorporation of newly available 

(exogenous) information into the analysis as well as its propagation from any given level or 

phase of analysis (e.g., test measurements on a system's component) to other levels (e.g., 

response prediction for the all system) [61]. The use of Bayesian statistics in the field of gas 

turbines was first suggested more than ten years ago [13] and its popularity has continued 

to increase ever since in areas like structural model updating and validation, reliability, 

or damage control [12, 25, 46, 108, 110]. The various Bayesian approaches all rely on the 

same principle, i.e. the Bayes' theorem; but they differ in the way the probabilities of the 

quantities of interest are numerically approximated and/or updated in the presence of error- 

carrying and, often times, limited and/or incomplete evidence (e.g., due to the use of a small 

set of measurement gauges). 

1.3.3    Uncertainty in System Identification, Updating and Validation 

In order to analyze, investigate and predict a physical phenomenon or system, a math- 

ematical model is often constructed to describe the interdependencies among the various 

physical quantities directly involved in the given process. A generic parametric form of such 

a model is given by 

g(M) = 0 (1) 

where g represents a ^-parameterized system of equations, of possibly various natures (e.g., 

algebraic, differential, or integral), describing the relationships between the physical quan- 

tities in the vector z, while 6 is a set of parameters whose values are usually unknown a 

priori. Of course, depending on the particular phenomenon or system, the model g can be 



further customized by separating the elements of z in dependent and independent quanti- 

ties, observable and unobservable, and so forth. In fact, equation (1) could be rewritten in 

the following form: 

y = f(x,0) (2) 

which explicitly describes the relationship between the independent variables x and the 

dependent quantities y, which are such that z = [x, y]. 

The main issue associated with complex systems and their dynamics is indeed to find 

the proper representation in terms of the physical quantities to be included within z, the 

causal relationships g linking them, and the determination of the parameters 9. In the 

literature, system identification refers to the plethora of methods and approaches developed 

to perform the task of describing an observed system via analytical/numerical models. As 

suggested by [74], these methods can be grouped in three categories: white-box, black-box 

and gray-box models. For the white-box models, there exists a good understanding of the 

system or process being investigated through which an appropriate physics-based model 

g can be rigorously formulated or selected. In this case, system identification translates 

into the subproblem of parameter estimation for the values of 6 that best correlate the 

mathematical framework to reality. To this end, the classical methods of least squares and 

statistically equivalent maximum likelihood have been long used [5, 51]. Black-box ap- 

proaches are data-driven and come into play when the cause-effect relationships describing 

a system or a process cannot be readily isolated. This is primarily the case for systems 

and processes which are complex in nature and/or whose dynamics lies in a high-dimension 

variable space. These techniques consists of mapping a system's inputs to its outputs based 

exclusively on the observed/measured data. Data fitting is at the core of this type of system 

identification, and approaches based on response surfaces [95] or neural networks [19, 20] 

have been proposed. As suggested by the nomenclature, gray-box models represent, in- 

stead, a combination of the previous two types. Extensive surveys on system identification 

techniques applied to structural dynamics are given in [37, 50, 51, 74, 101, 102], where 

time-domain, frequency-domain, modal-based, parameter-estimation and data-fitting ap- 

proaches are discussed and compared with one another.   Although the development of a 
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new system identification methodology is not the primary objective of this research, sys- 

tem identification is at its basis, as any analytical model is inherently imperfect and its 

predictive quality strongly depends on the assumptions embedded in it, as well as on the 

uncertainty contained in the data utilized to correlate its predictions with the observed real- 

ity. In particular, model updating techniques rely on the information regarding observable 

quantities to identify a suitable model within a class of plausible system representations, 

and to fine-tune the parameters of that specific representation to better match its response 

predictions with the measurement data. 

In the past decades, various approaches have been developed to update finite-element 

structural models, a survey of which can be found in [70]. Some of these techniques consist 

in the optimization of an objective metric, a function of certain model parameters, through 

standard optimization schemes, like genetic algorithms or simulated annealing [56, 82]. Ac- 

cording to [58], however, a distinction between model parameters and model structure, both 

of which contribute to modeling uncertainty, is deemed necessary in the problem of model 

updating. In fact, the concern raised is that an update performed only on model param- 

eters may cause the adjusted quantities to no longer carry a physical meaning when their 

correction is in response to errors and discrepancies with test data for which they are not 

ultimately responsible. In [58], an approach to include uncertainty due to model structure 

into model updating practices is also presented, where geometric parameters, namely node 

coordinates, are optimized together with mass, stiffness and damping properties. 

Uncertain model accuracy, quality of the measurements, and limited quantity of the 

observed information with respect to a model's level of detail, are such that system identi- 

fication and model updating are often affected by the issues of ill-conditioning and solution 

nonuniqueness. To address these challenges caused by the embedded variability, statistical 

inference has been proposed since the 1970's with the idea of superimposing a probabilis- 

tic model upon a deterministic structural model [28]. More recently, the use of Bayesian 

statistics has been suggested to construct a framework for model updating where the afore- 

mentioned issues are addressed by considering a class of structural models together with 

probability models, for parameter and prediction uncertainties, which are then updated 
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using the available test data via Bayes' theorem [6, 104]. In this context, the plausibility of 

each structural model, within the chosen class, becomes a function of the available data, ac- 

cording to which either a single most probable/likely and optimal model can be determined 

(in the case of global identifiability [49]), or several optimal sets of parameters' values and 

corresponding optimal models exist (in the case of local identifiability [49]), whose contri- 

butions are weight-averaged to produce a system's mean prediction of the response. Hence, 

rather than adopting a single model in the presence of multiple choices, this approach ad- 

dresses, in a robust sense, the problems of solution nonuniqueness and ill-conditioning by 

weighing the relative importance of each model according to their plausibility with respect 

to the observed data, and by assigning a variance to the mean response which accounts for 

the lack of global identifiability and solution uniqueness. 

This model updating technique has been employed, for instance, in the field of health 

monitoring and damage detection where a time-dependent probabilistic damage measure, 

constantly updated by means of time-varying newly available measurements, is used to 

assess the structure's health condition [21, 22, 55, 104, 108, 112]. Moreover, it has been 

tailored to address various scenarios of measured-data incompleteness, such as unmeasured 

input conditions and limited number of measured degrees of freedom [108, 111]. In order 

to address the large computational cost associated with solving the Bayesian probability 

integrals, various numerical methods have been exploited ranging from an asymptotic ap- 

proximation [6], whose accuracy degrades as test data become more scarce, to Markov 

Chain Monte Carlo (MCMC) simulations [109], which are generally inefficient when dealing 

with high-dimension problems, to Gibbs sampling (a subclass of MCMC simulations) whose 

sampling dimensionality has been successfully uncorrelated from the number of uncertain 

parameters being explicitly modeled, thus making the stochastic analysis computationally 

more manageable [22]. 

For the purpose of model updating and model prediction assessment, direct uncertainty 

propagation is also well established. In this context, the probability distributions of certain 

input parameters of a system are assumed to be known and are employed to compute a cor- 

responding probability distribution for its response. Knowledge of parameter uncertainty, 
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however, may not always be readily available from inspection and/or measurements (e.g., 

a particular parameter might not be directly measured), therefore any assumption on its 

statistical nature could be misleading or erroneous. In [29, 30], an inverse method is sug- 

gested to extract the missing information on parameter uncertainty from the measurement 

data themselves. The technique consists of assigning a parametric family of probability 

distribution functions to the system inputs of interest, of establishing the statistical rela- 

tionship between system inputs and outputs via a direct propagation scheme (namely a 

perturbation scheme and Monte Carlo simulations), and of using such a relationship to 

construct an output-measurement-based likelihood function to be maximized with respect 

to the parameters characterizing the family of probabilities (e.g., mean and covariance ma- 

trix for Gaussian distributions). The estimators for the parameters of a probability family, 

obtained through this maximization process, identify the probability density function that 

best agrees with the given test data, and provides a statistical representation for the uncer- 

tainty in the corresponding system input parameters. 

Despite the insight gained on parameter uncertainty, the method in [29, 30] fails to 

address the issues of modeling and measurement variability, which condition the quality of 

the gathered knowledge. These aspects have been tackled in [63, 71] where a stochastic 

model-updating approach was developed to account explicitly for such uncertainty sources. 

Given a set of system outputs, multiple data sets of their experimental observations, ob- 

tained from seemingly identical yet distinct structures because of production variability, 

are statistically compared against multiple sets of their simulated predictions, generated, in 

turn, via direct propagation of a priori uncertainty in the chosen set of model parameters. 

Updated estimates for these parameters' statistics are then derived through a minimization 

scheme applied to the Euclidean distance between the mean values of the experimental and 

simulated results, whose reconciliation is deemed to take into consideration the modeling 

and experimental variabilities in a more exhaustive fashion. Finally, in dealing with the 

assessment of model uncertainty in model updating, an important issue is the independence 

of the observations.  In particular, when model prediction errors are accounted for in the 
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updating process, it was shown that the correlation existing among their different realiza- 

tions reduces, de facto, the amount of information contained in them [32]. This loss of 

information, when not incorporated in the objective or likelihood function used to identify 

the most likely system model, is deemed to potentially lead to misleading predictions by 

the model itself. 

Model validation, closely related to model updating, also makes use of experimental 

data, although for a different purpose, which is the evaluation of model prediction capabili- 

ties instead of model tuning. Validation and consequent response predictability of a system 

are evaluated by means of a correlation assessment of test data versus simulated results 

for the same scenario, where a model is arguably assumed to be validated as long as it is 

capable of replicating the measurement data themselves [40, 47]. This approach offers no 

guarantee that the validated model at hand can indeed predict accurately outside of the 

tested region [47]. Furthermore, the experimental data used for validation are affected by 

uncertainty, thus requiring results to be characterized, once more, in a statistical fashion. 

In some cases, this uncertainty is simply included within the already pre-existing modeling 

uncertainty [40], where experimental results are, instead, treated as the reference condition. 

In other circumstances, selection from competing models is performed by means of statis- 

tical hypothesis testing on a given metric, according to which a proposed analytical model 

is either accepted or rejected based on observed data affected by errors. 

In [60, 61, 85, 114] the Bayes' factor has been used in the context of system model veri- 

fication and validation, while examples are offered in [3, 103] on how it can also be utilized 

as a means to address the lack of knowledge, referred to as statistical uncertainty [103], 

about the uncertainty models themselves (e.g., unknown type of probability distribution 

and unknown values of its parameters). In fact, given a set of observed data, a host of 

probability-distribution models may be considered for fitting those data. In the presence of 

competing models, the Bayes' factor has been shown to facilitate in the selection process 

when other goodness-of-fit metrics were instead inconclusive in determining which proba- 

bility distribution was best suited with respect to the observations [103]. Inasmuch as the 

Bayes' factor is constructed upon some prior knowledge about the problem at hand and 
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constitutes a metric to perform comparisons, various alternative definitions of it have been 

put forth in the literature to address both the issue of incomplete/missing priors and the 

problem of having to compare "apples" to "oranges" (i.e., comparison and selection between 

disjoint sets of models) [3]. 

In summary, the wealth of methods addressing the issues of uncertainty quantification 

and propagation appears to be rather substantial, ranging from perturbation/sensitivity 

techniques and stochastic procedures, to parametric/non-parametric probabilistic and pos- 

sibilistic approaches, to causality-oriented methods like the Bayesian networks. Each tech- 

nique has been proposed to tackle a specific source of uncertainty, type of system (e.g., 

linear or nonlinear), or related computational challenges. Their common ground is the 

quantification of uncertainties through appropriate measure metrics, and the modeling of 

their propagation to improve the design of a system safety-wise and reliability-wise, as well 

as to assess its predictive capability within the desired range of usage and in-field conditions. 

1-4     Work Scope and Organization 

As appears from the previous sections, the predictive accuracy of a system model is 

affected by uncertainty introduced by simplifying assumptions, lack of complete knowledge 

about the physical unit, or other closely related causes. To improve model fidelity, test data 

are usually correlated with model results for calibration purposes even as the former are 

affected by uncertainties and errors. As a result, it becomes essential to assess a system's 

predictive accuracy when several sources of uncertainty, both from modeling and test anal- 

ysis, are combined together. Within the large field of uncertainty modeling, this research 

is focused on the probabilistic description of uncertainty present in dynamic structural re- 

sponse predictions. The proposed methodology provides a structured and coherent way to 

correlate and merge different sources of information to help enhance the quality of the esti- 

mation and the assessment of uncertainty. To this end, the research comprises the following 

steps: 

• Isolation, whenever possible, of the sources of uncertainty associated with different 

contributors (in this context, analytical model and experiments); 
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• Parameterization of the system's model with respect to the given sources of uncer- 

tainty; 

• Identification of the main contributors to uncertainty by means of a sensitivity analysis 

conducted on the system's model and aimed at filtering out those factors that weakly 

influence the observed uncertainty; 

• Assessment of the level of uncertainty present in experimental data sets via model/test 

correlation analysis; 

• Probabilistic representation of uncertain quantities within a Bayesian-network-based 

response inference scheme; 

• Assessment of the impact of the considered uncertainty sources upon system's accu- 

racy; and 

• Uncertainty reduction based on the information obtained from (additional) experi- 

ments. 

Built upon these steps, a unified statistical framework, based on the use of Bayesian net- 

works, has been implemented and investigated as a means to estimate the critical vibratory 

response of structural systems.   The role and relevance of these steps will be elaborated 

further and become clear in the following chapters. 

Including this introduction, this dissertation consists of six chapters. In Chapter 2 the 

impact of modeling and physical uncertainties associated with structural systems is assessed, 

where uncertainty in geometry, material properties and test measurements are taken into 

consideration. A model-based technique for the estimation of the vibratory response of 

dynamic structures is introduced and propagation of its embedded uncertainty is simulated 

through the use of probabilistic analyses conducted upon given system and experimental 

parameters. For this purpose, two modeling approaches were considered to describe bladed 

disks respectively based on beam theory and lumped dynamic elements, and cyclic analysis. 

In Chapter 3, the same inference technique is applied to experimental data for a simpli- 

fied geometry.   The impact of experimental uncertainty upon the response estimation is 
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quantified through a correlation analysis of the results from the system's numerical model 

and the corresponding test data. More specifically, the objective of this investigation is to 

account for uncertainties associated with sensor accuracy and measurement noise level in 

an explicit manner. To this end, test measurements from cantilever plates were used so 

as to limit the effects otherwise related to more complex test setups and system modeling. 

In Chapter 4, a feasibility study on the application of Bayesian networks to the problem 

of uncertainty reduction in structural dynamics is presented. In particular, Bayesian belief 

networks are explored as a potential means to enable the exchange of information between 

experiments and model. Their use is intended to enable the propagation of any additional 

information, available, for instance, for certain components of the structure or at different 

stages of the analysis, throughout the entire response inference process with consequent 

updating of the estimated quantities. In Chapter 5, a Bayesian-network representation of 

the model-based response inference procedure is formulated and its performance in terms of 

uncertainty reduction, through the propagation of additional information, is assessed for a 

beam and a plate structure, for which the impact upon prediction fidelity of additional sen- 

sor measurements is explicitly evaluated. Test and model uncertainties are both taken into 

consideration together with the lack of knowledge about the physical system in a unified 

framework, whose underlying assumptions are also discussed. Finally, Chapter 6 provides a 

summary of the findings and an introduction to the open-ended challenges to be addressed 

together with possible directions for future work. 
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CHAPTER II 

SIMULATION OF UNCERTAINTY PROPAGATION IN 

MODEL-BASED RESPONSE INFERENCE 

2.1 Overview 

In this chapter, a standard technique to predict a system's vibratory response is pre- 

sented. Such a process consists of estimating the maximum vibratory response of a system 

via modal scaling of given peak amplitudes observed in test results. Such a technique in- 

volves the direct interaction between modeling and experiment-related uncertainties. Sen- 

sitivity analysis is performed to quantify the impact of such sources of uncertainty upon the 

predicted response's accuracy, and to study the propagation of experimental uncertainties 

through a numerical model also affected by inaccuracies. More specifically, the effects of un- 

known model characteristics (e.g., mode shape error), sensor measurement and location are 

explicitly addressed, while the impact of other uncertainty sources could be implicitly taken 

into consideration. The interaction among uncertainties and their effects are investigated 

by means of simulated experimental results for two structures of different complexity: a 

simple beam-like blade model and a more realistic blade model, described via finite-element 

analysis. 

2.2 Model-based Response Estimation Methodology 

In structural dynamics applications (e.g., turbine engine blade testing), maximum stress 

levels are estimated through the combination of measurements of the system's vibratory 

response at given sensor locations, and information obtained from the numerical model of 

the component. The inference technique adopted in this work consists in scaling the mode 

shape of the system that best approximates its forced response at the frequency of maximum 

excitation. In fact, at any point x = (x, y, z) on the structure, the forced response amplitude 
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e(w,x), at the excitation frequency us, can be written as a linear modal expansion: 

oo 

£(u,,x) = £Z^(x) (3) 
J=i 

where the quantities 0j(x) are the structure's mode shapes, and Dj are the coefficients of 

modal participation, which, in general, may be functions of frequency and/or time. In a 

case where the excitation frequency w approaches the natural frequency u;n of the system, 

the forced response may be estimated according to the following approximation: 

e(w,x) «£>„<£„(x) (4) 

The estimation process can be thought of as composed of two steps: the identification 

of the mode corresponding to a given resonance peak, and the subsequent extrapolation of 

maximum response values through the combination of available test data and information 

from the model. These two steps are described in the following sections. 

2.2.1    Mode Identification Procedure 

It is assumed that a structure's response corresponding to a given frequency peak of 

the vibratory response is proportional to the corresponding mode. This assumption, which 

neglects residual contributions from the other modes of the structure, introduces errors in 

the case of closely-spaced modes, but is commonly used for the estimation of stress levels 

in turbine engine bladed disks [100]. The identification of the mode corresponding to a 

given peak p in the response spectra assumes the presence of Ng gauges mounted on the 

structure at locations xg (g = l,...,Ng). Let un be the n-th modal frequency obtained 

from the numerical model of the component under investigation, with n = 1,..., Nm where 

Nm is the number of modes in the frequency range of interest. For the purpose of mode 

identification, a parameter ipp,n may be defined as follows: 

No   ( No . . ,     . 
e{LjPi,Xi)        ere(xi) 

i=l   I j=l 
(5) 

where ujpi denotes the p-th peak frequency recorded at sensor i, e(ü/Pi,Xi) is the measured 

response amplitude at that frequency, while en(xi) is the modal quantity corresponding to 

the measured response, evaluated at the sensor location x*. The parameter ^Pyn is a measure 
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of the proximity between a numerical mode and corresponding frequency and measured 

peak response amplitudes and frequencies. Given a numerical mode n, the corresponding 

resonating mode in the measured data can be found by minimizing ipPin, for p = 1,..., Np. 

2.2.2    Estimation of Maximum Response 

The modal identification procedure described above can be used to combine measured 

information at the sensor location with modal data obtained from the model. The modal 

data together with the assumption that a single mode contributes to the measured response 

at the considered resonance peak permits the estimation of response amplitudes at a location 

different from where a sensor is mounted. In principle, response amplitudes can be estimated 

over the entire structure, and maximum values can be easily extrapolated. For instance, 

assuming that strains are measured, the strain at a generic location x can be obtained from 

the measured strain at location x9 through the following relation: 

e;(wp,x) = f^—- e(wp,xs) (6) 

where e is the measured strain amplitude at frequency u>p, ep is the modal strain value in 

the same direction of the measured strain, and £* denotes the estimated strain value at 

x based on the strain measurement at location xs. The modal strain is selected from the 

modal results in the model in accordance with the identification procedure described in 

the previous section. Hence, the subscript p denotes the mode shape out of the set of 7Vm 

modes which minimizes the coefficient %j)p<n in equation (5) for the selected peak frequency 

u)p. Additional processing on the modal data also allows the estimation of equivalent strains, 

calculated, for instance, according to the Von Mises criterion [2, 27]. The equivalent Von 

Mises (VM) strain at location x and frequency u>p can be simply calculated as follows: 

C, K'x) = -^j- £K> xs) (?) 

where e* (wp, x) is the estimated Von Mises strain at point x computed using the strain 

amplitude at frequency up measured at location xg, and eVM (x) is the corresponding Von 

Mises modal strain. 

The information obtained from all the gauges can then be combined to compute the 
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overall maximum amplitude ep* of the vibratory response metric at the p-th peak (e.g., 

equivalent strain, equivalent stress or displacement amplitude): 

e^ = max lmaxel(uip,x),... ,maxe^ (wp,x.) \ (8) 

where, ideally, the quantities maxx {e*(uip, x)} (g = 1,..., Ng) would be near in value. It is 

worth noting that the response inference technique is independent of the type of response 

being estimated. The nature of the measured response £(wp, Xj) and corresponding modal 

quantity en(xj) will, of course, depend on the type of sensors (e.g., strain gauges, displace- 

ment sensors, or other) used in a given experiment. As a consequence of that, consistent 

modal quantities and test data are to be utilized within equations (5)-(8). Equations (6) 

and (8) are herein used as the basis for the analysis of various sources of uncertainty in 

structural dynamics. 

2.3    System Modeling of a Bladed Disk 

As mentioned in Section 1.3.1, several approaches are available to reduce the analysis 

complexity associated with bladed disks. Next, the two approaches considered in this study 

are presented. They are based on elementary beam theory and cyclic symmetry, respectively. 

2.3.1    Reduced-order Models 

A reduced-order idealization of bladed-disk assemblies is shown in Figure 1. In the given 

configuration, each blade is described as a beam connected to a support representing the 

rotor. The flexibility of the rotor is accounted for by means of concentrated translationaJ and 

torsional spring elements (kT and kr) located at the blade-disk interfaces. Blade-to-blade 

coupling effects induced by aerodynamic interaction and rotor flexibility are also treated, 

as a first-order approximation, via translational springs (kc). Furthermore, the centrifugal 

stiffening of the blades due to their precession (fi0) about the shaft axis is modeled according 

to standard theoretical approaches for rotating beams [66]. At this stage, this model only 

accounts for simplified boundary and loading conditions. More realistic ones, such as blade 

attachments and pressure loads, were not taken into account here, but would need to be 

included in more advanced models. 
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Figure 1: Schematics of simplified models of a bladed disk. 
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Figure 2: Finite-element model of a disk sector. 

2.3.2     Finite-element Model 

The other system under investigation is a disk composed of 19 nominally identical 

bladed sectors (N3 = 19). A single sector is modeled in the commercial finite-element 

package ANSYS®, using the mesh depicted in Figure 2. The model is discretized using 

SOLID95 elements, where blades and disk are considered as a single integral unit, while 

zero-displacement conditions are imposed at the disk-shaft interface. The structure's cyclic 

nature is taken into account by imposing compatibility constraints in the form of a set of 

periodic boundary conditions on the sector sides, similar to the ones discussed in [59, 81]. 

Using the duplicate-sector approach, such boundary conditions can be expressed as follows: 

UD 

cos ka     sin ka 

- sin ka   cos ka 

UB 

UD 

(9) 

where B and D represent the basic sector and its duplicate, respectively, with one exactly 

overlapped onto the other. Equation (9) establishes a constraint between the degrees of 

freedom U (i.e., displacements and rotations) of corresponding nodes on the sides of the 

two sectors, where each nodal U is to be expressed in a local cylindrical reference frame 
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having one axis parallel to the disk's axis of rotation and one of the others oriented in the 

radial direction. Moreover, a = 2i:/Ns represents the sector angle in radians, while the 

harmonic index k is defined as: 

k = < 

0, 1,...,4»       Ns even 

(10) 

0,1,..., ^=1 jVsodd 

Given an external load applied on the j-th sector, a Fourier transformation process is 

used to convert it into an equivalent set of loads applied on the basic and duplicate sectors, 

whose displacement fields {(ÜB)/, , {Uo)k\ are computed individually for each value of the 

harmonic index. The displacement field for the entire structure is obtained via superposition 

of the single contributions [2]: 

max(fc) 

Uj=     £  (UB)kcos[(j-l)ka] 
fc=0 (11) 

-(UD)ksm[(j-l)ka},  j = l,...,Ns 

where the relationship also holds for the stress and strain field. 

In order to excite the cyclic structure at a natural frequency uJU}k, a forcing function F 

of the following form is to be applied on the disk sectors: 

Fi=FoeK**^+ftA], .T=l,..., A'. (12) 

where F0 is the force amplitude, u> is the excitation frequency, and the integer A accounts for 

the arbitrariness that is still available phase-wise, after the coordinate system is assigned for 

the entire disk model, due to the possibility of arbitrary numbering of the sectors. The effect 

associated with such an angular shift is a rigid rotation of the forced-response deformation 

by an amount aX, which represents an additional degree of freedom within the response 

estimation procedure. A similar arbitrariness also appears in the modal analysis, where 

two modes associated with the same natural frequency un^ may exist. The relationship 

between these so-called double modes, <t>nk and (j>nk, is given by 

^n k = ^n ke N"  >   7 = arbitrary integer (13) 
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where, in general, 7^A. 

In a case where two modes with the same frequency are excited, it is necessary to 

account for the angular shifts between the repeated modes and the forced deformation 

itself, before the maximum vibratory response can be estimated via modal scaling. This 

situation is from henceforth referred to as a double-mode case. In such a scenario, according 

to equation (4), the forced response at the peak frequency UJP near the natural frequency 

u>n j. can be approximated, at any point x of the structure, as: 

e{up,x) = Ä^(x) + &*$(x) , (01,/%) e (9?,3?) (14) 

where the two sensor measurements, e(wp, xj) and S(LüP, xc) (1 < b, c < Ng), are sufficient 

to compute the coefficients ß\ and /%: 

ßi 

h 
> = 

fcW, .(2), 
1 -1 

C(X*)     <£(*) 
.(1), A(2), <*(*)     <iW 

e(wp, xj,) 

e(wp, Xc) 
(15) 

The two gauges are not to be placed on the same sector so as not to have a redundant 

set of equations. Finally, the estimated maximum vibratory condition E
P

* can be obtained 

through maximization of equation (14): 

^=mxax||Ä^(x)+^g(x) (16) 

which, in the special case of double modes, substitutes equation (8) within the response 

inference process. 

2.4    Sources of Uncertainty 

At this stage, the types of uncertainties being considered include sensor-based, modeling 

and input uncertainties. The first type is associated with the limited knowledge of system 

dimensions (for instance, due to tolerances) and material characteristics. The second and 

third kind are introduced, respectively, to account for several sources of uncertainty due to 

out-of-control experimental conditions and/or instrumentation limitations (e.g., measure- 

ment inaccuracy, sensor sensitivity to external conditions), and to study the effect of a 

discrepancy between the physical system and the analytical (or numerical) model. 
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2.4.1 Input Uncertainty 

Uncertainty in a physical system's material characteristics (e.g., Young's modulus or 

density) and dimensions due, for instance, to manufacturing imprecision and machine toler- 

ances can cause the "true" (but unknown) inputs to the model to deviate from the "nominal" 

values (i.e., used in the model), thus leading to a difference in response between the actual 

system and the prediction model. 

2.4.2 Sensor-based Uncertainties 

The estimation of a system's maximum response also is affected both by uncertainty 

in the amplitudes read by the sensor, and by limited knowledge of its exact placement. 

Uncertainty in a sensor's reading can be caused by several factors, which include, among 

others, measurement noise, response non-linearity, and/or a strain gauge's imperfection in 

its adhesion to the component. The impact of a sensor measurement error on the response 

estimation has been investigated by perturbing the recorded amplitude e(w, xs) by a random 

error Ar]g. More specifically, the following formulation has been adopted: 

e(w,x9) = e(u,x.g) + Ar]g (17) 

T]g ~ N (0, <rg),     g = l,...,Ng 

where £(ui,x.g) defines the perturbation of the measured vibratory amplitude with respect 

to the nominal value e(xs,w), and T]g has been assumed to be a normally distributed non- 

dimensional quantity with zero mean and standard deviation ag. Uncertainty is introduced 

through the sensor's noise parameter A, defined herein as a percentage of the maximum 

response amplitude for the mode identified by the estimation process defined in equation 

(5). This definition is an attempt to account for uncertainty in the sensor measurements, 

while at the same time removing the dependence of A upon the sensor's reading and, 

indirectly, position on the component. In fact, in a test, sensors of the same type, placed at 

different locations, may be subject to quite different conditions (e.g., pressure, temperature, 

or loads) which may significantly affect their accuracy across the same measurement range. 

At present, no specific type of sensor (e.g., NSMS, strain gauges or accelerometers) has 
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been taken into consideration. A more ad hoc definition for r)g may be needed, however, 

when considering a given sensor type so as to account for its specific characteristics and 

gain better and more realistic insight. 

Uncertainty associated with sensor location can be introduced in a similar fashion, i.e. 

by perturbing the modal information at the gauges' positions before using it in equation 

(6): 

eP(xs) = ep(xff + Cg),  g = l,...,Ng (18) 

where £g represents the difference between nominal and actual position of the sensor on 

the structure. Since the real sensor's location is uncertain, £g is treated as a random 

quantity, which, however, still needs to satisfy given geometry constraints (e.g., surface 

contact between strain gauge and component). Given the geometry-dependent nature of 

this approach, more detailed discussions are provided in subsequent sections, where specific 

geometric configurations are addressed. 

2.4.3    Modeling Uncertainty 

Another source of uncertainty that may affect the effectiveness of the inference process 

is represented by the limited accuracy of the system model at hand. Among the several 

factors influencing model fidelity, attention is given to the effect of a mismatch between ex- 

perimental and numerical mode shapes used to perform the estimation. Such a discrepancy 

is reproduced by perturbing the model mode shapes so as to simulate those circumstances 

in which the model is not capable of capturing entirely the behavior of the tested unit. 

Given the experimental mode shape <f>\ and the corresponding model mode shape <^m) 

(i = 1,2,..., Nm), the mismatch between the two is introduced as follows: 

*« = £ t^g (19) 

In this case, the experimental mode <j)\   is expressed as a linear combination of the i-th mode 

shape and its immediate neighbors in frequency, through the set of weights (wi-i,Wi,Wi+\). 

The correlation between experimental and model modes (or between perturbed and 

unperturbed modes in case of computer simulated experiments) can be established through 
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the Modal Assurance Criterion (MAC) [1]: 

MACqtt = 
of <t] 2 

4e)T 4e) 
^ T^ 

9,* = 1,2,. ,Nn (20) 

The MAC matrix is close to an identity matrix when good correlation exists between the two 

sets of mass-normalized mode shapes. In this particular setting of simulated experiments, 

it also offers a way to quantify the amount of perturbation introduced by a given set of 

weights. 

2.5     Uncertainty Propagation in the Beam-like Blade Model 

The response estimation methodology introduced in Section 2.2 has been evaluated 

against the input, modeling, and measurement-based uncertainties introduced previously, 

first in the case of a beam-like blade and then for a realistic disk sector, both instrumented 

with two sensors, S\ and 52- 

The beam-like blade being considered is part of the simplified rotor model shown in 

Figure 1. Stresses and displacements in the blades are computed for assigned inputs and 

loading conditions (i.e., amplitude, excitation frequency a», and point of application along 

the blade), engine operating condition (i.e., the angular velocity fl0), as well as the blade ge- 

ometry and material characteristics (Table 1). It is standard practice to synthesize stresses 

and displacements in the form of Campbell diagrams, which summarize the response am- 

plitudes over the considered ranges of excitation frequencies and rotor speeds. An example 

of a typical Campbell diagram is given in [4] and reproduced in Figure 3, where regions of 

high stress levels, so-called "resonance blossoms", can be identified for the rotating system 

under investigation. Each of these resonance responses originates from the intersection of 

an engine order excitation with one of the structure's natural frequencies. A system's max- 

imum vibratory response obtained from the Campbell diagram can then be combined with 

its static response in a Goodman diagram to assess the risk of fatigue failure. 

2.5.1    Input Uncertainty 

The effect of an input uncertainty propagation is addressed through a sensitivity study 
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Figure 3: Typical Campbell diagram for a rotating system. 

Table 1: Beam geometry and properties. 

Quantity Symbol Value 
Length L0 22.5 cm 
Thickness T0 2 cm 
Chord Co 15.3 cm 
Density Po 4430 Kg/m3 

Young's modulus E„ 111 GPa 

on the Goodman diagram, where variations both in geometry (i.e., length L0, cross-section 

dimensions T0 and C0) and material properties (i.e., E0 and p0) have been evaluated using 

the system model of Table 1. For this particular system, a point £ on the Goodman diagram 

is identified as: 

S=(aaM,(7m) (21) 

where the maximum longitudinal alternating stress aa    on the blade is herein denned as 

oa    — max (max|cra(x)| 1 ,    0 < x < L0 (22) 

so as to account for both the operating condition Q0 and the excitation frequency of the 

forcing function. The mean stress am corresponds, instead, to an equivalent mean load 

statically applied at the blade's tip. As an example, illustrated in Figure 4 is the effect 

of a 2% variation in chord and thickness, where the perturbations have been assumed to 
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Figure 4: Goodman diagram for a single beam-like blade: effect of uncertainty in C0 and 
T0 upon the stress levels. 

have a normal distribution. As can be observed from the plot, some combinations of beam 

cross-section dimensions may cause the structure to be significantly close to its fatigue limit 

or to exceed it. A sensitivity study on beam length produced a similar spread of the stress 

levels, whereas no significant scatter in the response was observed when varying the material 

properties. 

2.5.2    Sensor-related Uncertainties 

Uncertainty in sensors' readings and locations have been investigated via 10,000-run 

Monte Carlo simulations. The effect of a sensor measurement error upon the estimate of 

a system's response has been introduced according to equation (17) with the assumption 

that 0-0=1,2 = cr = 0.01. Furthermore, taking into account the one-dimensional nature of 

the beam analysis, uncertainty in the location of the g-th sensor is expressed by means of 

equation (18) with the nominal position xg being perturbed in the following manner: 

(23) 
Xg      Xg   ~T  -L/f (jO 

CS~AT(0,(7S),    ff = l,2 

where x\ = 0.25Lo, X2 = 0.75Lo and the perturbed location xg is computed in terms of a 

reference length Lr, chosen to be equal to half of the blade span L0. 
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Figure 5: Beam: variability in the maximum-displacement estimate due to uncertainty in 
the sensor locations perturbed separately (a = 0.01). 

In order to address their individual impact upon estimation accuracy, uncertainties in 

sensor measurement and position have been addressed separately. Despite the fact that this 

distinction may be somewhat hard to make in real test conditions, it still offers valuable 

insight with respect to uncertainty propagation. The effect of each source of uncertainty 

has been investigated and quantified through 10,000-run Monte Carlo simulations, where 

a non-dimensional variance a2 equal to 0.012 has been assumed for all the case studies. 

Furthermore, results are presented in the form of a variability in the absolute error, defined 

as the difference between the estimate obtained from the inference process and the actual 

response resulting from a forced harmonic analysis conducted on the system model. 

Shown in Figures 5 and 6 is the variability, due to uncertainty in sensor positions, in 

the estimates of the maximum displacement u*M and maximum axial stress amplitude a*x , 

both computed according to equation (8) at the second resonance condition (i.e., the omitted 

superscript p = 2). Each plot compares the uncertainty resulting from the perturbation of 

each sensor separately. Of course, this one-at-a-time approach is an idealization, whereas 
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Figure 6: Beam: variability in the maximum-stress estimate due to uncertainty in the 
sensor locations perturbed separately (a = 0.01). 

a larger uncertainty may result from both sensors being in non-nominal conditions at the 

same time, which could affect the mode identification process through the ratio §?§4, as well 

as the accuracy of the estimates due to the coupling between the perturbed sensor position 

xg and the amplitude ep{x) of the selected mode at that location. Illustrated in Figure 7 

is the case in which both sensors' positions have been randomly varied simultaneously. In 

this circumstance, the estimates' variability appears to be skewed. This behavior, however, 

has no physical basis, but it is merely due to the discrete nature of equation (8), where one 

estimate was probabilistically higher than the others, hence prevailing in the maximization 

process. When treated individually, each estimate exhibited a normally distributed trend 

similar to that of Figures 5 and 6. Overall, despite their limited validity due to the simple 

nature of the system and the sensor's point representation, these results highlight how 

the variability in stress and displacement estimates depends significantly upon the location 

where measurements are taken, thus suggesting the need for optimal placement of the 

instruments together with a better and more accurate description of their characteristics 
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Figure 7:  Beam: variability in the maximum-stress estimate due to uncertainty in both 
sensor locations (a = 0.01). 

[75, 89]. 

The effect of an uncertainty in sensor readings is illustrated in Figure 8. The results 

were obtained by varying only one measurement data set at a time, while assuming a 100% 

accuracy for the other sensor. Similarly to what was observed when varying the sensor 

locations, the results show that the response estimates are characterized by a different level 

of variability for each of the sensors, which could be related to the difference in the signal-to- 

noise ratio at the various instrumented locations. Therefore, this behavior suggests that the 

effect of a measurement uncertainty could also depend upon sensor placement, thus making 

any distinction between the two sources of uncertainty more difficult to draw. Finally, when 

both sensors' measurements were varied simultaneously, results similar to those depicted in 

Figure 8 were observed. This is exclusively due to the fact that the estimates in equation 

(8) are only coupled through ep(x), and the same mode shape was always selected regardless 

of whether only one or both sensor readings were being perturbed. 
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Figure 8:   Beam:  variability in the maximum-stress estimate due to uncertainty in the 
sensor readings perturbed separately {a = 0.01). 

2.5.3    Modeling Uncertainty 

In order to study the effect of modeling uncertainty for the beam-like blade system, its 

mode shapes were perturbed using two sets of weights in equation (19), where each group 

of weights represented a model of different accuracy. The nominal and perturbed system 

models were compared by means of their MAC matrices, depicted in Figure 9, according 

to which configuration MAC2 indicates a better correlation between perturbed and unper- 

turbed quantities. The MAC is a common and widely accepted means to assess the degree 

of correlation between perturbed and unperturbed modes, or between a physical system 

and its analytical representation. In order to evaluate the effect of modeling uncertainty on 

the prediction of a system's response, the perturbed modes ^e\x) were used in conjunction 

with a random variation of the sensor locations: 

(24) 
C9~JV(0,<79),    5=1,2 

where the Gaussian quantity £9 represents the variability associated with the g-th sensor 
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(a) MACi: u;,., = 0, w0 = 1, w1 = 0 (b) MAC2: tu_j = 0.1, w0 = 0.8, t^ = 0.1 

(c) MAC3: w_l = 0.15, w0 = 0.7, w1 = 0.15 

Figure 9: Beam: MAC matrices for modeling uncertainty (JVm = 5). 

position. Depicted in Figure 10 are three probability density functions for the stress quan- 

tity <7* , corresponding to the three MAC matrices of Figure 9 and obtained via Monte 

Carlo simulations with 05=1,2 = o = 0.01. The beam was assumed to be instrumented with 

only one strain gauge, and the response estimates were obtained by substituting equation 

(24) into equation (8). For this simple model, Figure 10 indicates that less modeling uncer- 

tainty yields lower variability in the response estimates, hence higher prediction confidence. 
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Figure 10: Beam: variability in the maximum-stress estimate due to modeling uncertainty 
via mode shape perturbation. 

2.6     Uncertainty Propagation in the Bladed Disk Model 

The same analysis process illustrated earlier has also been employed for the estimation 

of the critical vibratory response of a compressor rotor disk representative of the system 

treated in [86], whose characteristics are listed in Table 2. Due to the lack of experimental 

data, harmonic analyses with various cyclic loading conditions have been conducted on the 

finite-element model of Figure 2 to simulate different testing conditions. Measurement data 

were obtained for different ranges of the excitation frequency, where periodic loads of the 

form given by equation (12) were applied on the blades' tips in radial or transverse direction. 

Two sensors, S\ and 52, were considered at locations on the outward part of the blade's 

span, one on the pressure surface and the other on the suction surface of two distinct blades, 

four sectors apart. The other set of information needed for the estimation of the maximum 

forced response was obtained through modal analysis. Listed in Table 3 are the structure's 

natural frequencies obtained through the finite-element model, while depicted in Figure 11 

is one pair of its double mode shapes. 
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Table 2: Bladed disk characteristics. 

Quantity Symbol Value 
Blade height Hb 5.08 cm 
Blade chord O, 12.7 cm 
Disk outer radius Rft 10.16 cm 
Shaft radius Rs 1.27 cm 
Disk thickness Td 1.52 cm 
Material Ti-6-4 - 

Table 3: Bladed disk natural frequencies 

w*,* [Hz] 

Harmonic Index 
Mode A; = 0 fc = l fc = 2 fc = 3 
n= 1 1071.9 839.37 1190.1 1414.5 
n = 2 1231.4 839.37 1190.1 1414.5 
n = 3 1946.1 1609 1846.4 3085.1 
n — 4 3378.4 1609 1846.4 3085.1 
n = 5 5434.6 3374.4 3390.6 3499.8 
n = 6 6977.6 3374.4 3390.6 3499.8 
Mode k = 4 k = 5 fc = 6 fc = 7 
n= 1 1441.6 1449.2 1452.1 1453.2 
n = 2 1441.6 1449.2 1452.1 1453.2 
n = 3 3346.2 3361.3 3366.4 3368.9 
n = 4 3346.2 3361.3 3366.4 3368.9 
n = 5 4554.3 5428.7 5987.5 6333.4 
n = 6 4554.3 5428.7 5987.5 6333.4 

Presented next are some case studies which illustrate the effects of sensor-related uncer- 

tainties, modeling accuracy as well as their combined impact and propagation, where the 

vibratory response of the structure has been investigated in the form of Von Mises stresses 

at various resonance conditions. The predicted maximum Von Mises stress a*,,    has been VMM 

computed through equation (8) for a single-mode case, or via equation (16) for double-mode 

cases. 
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Figure 11: Bladed disk: double modes at wi,i = u>2,i = 839.37 Hz. 

2.6.1     Sensor Measurement Error and Location Uncertainty 

Measurement errors are herein introduced according to equation (17) described in Sec- 

tion 2.4.2, where the perturbation to the nominal measurements is assumed to be normally 

distributed with a = 0.01, while the gauge noise A is considered equal for all the sensors. 

Shown in Figure 12 is the variability of a* M obtained via a Monte Carlo simulation in 

which only the readings of sensor S\ were assumed to be affected by uncertainty. As it can 

be observed, the interpolated probability distribution fits the simulation histogram data 

quite well. Depicted in Figures 13 and 14 is instead a comparison between the probabil- 

ity density functions of the two estimates, with sensor measurements perturbed separately 

and concomitantly. Figure 13 reveals that a reading uncertainty affecting only sensor 52 

causes the stress estimate's relative error to have a smaller spread when compared with 

the estimate's variability associated with just a measurement error in the other sensor. An 

opposite result can, instead, be observed in Figure 14. Of course, in the particular case of 

a double mode being excited, both sensor readings do play a role in the estimation process 

via equation (15), thus making it difficult to assess their relative impact on the resulting 

uncertainty. Furthermore, the effect of sensor positioning is also present through the val- 

ues of the modal quantities at the given locations, which could reduce or amplify a given 

uncertainty. Finally, illustrated in Figure 14 is also the effect of both sensor readings being 

varied at the same time, for which case the overall spread of the estimated forced response 

appears to worsen. 
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Figure 12: Bladed disk: variability in the maximum-stress estimate due to uncertainty in 
the reading of sensor 5i (u/i,o = 1071.9 Hz). 
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Figure 13:  Bladed disk: sensor-based comparison of variabilities in the maximum-stress 
estimate due to uncertainty in the sensor readings perturbed separately (u^o = 1071.9 Hz). 
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Figure 14:  Bladed disk: sensor-based comparison of variabilities in the maximum-stress 
estimate due to uncertainty in the sensor readings (ufye = ^4,6 = 3366.4 Hz). 

Uncertainty in sensor location is introduced by replacing the modal information cor- 

responding to the sensors' nominal locations with modal values associated with their per- 

turbed positions. In this instance, however, sensors were placed on the suction and/or 

pressure surfaces of the blade for which no analytical formulation was available, thus re- 

quiring numerical interpolation. The nominal position of a sensor, (x0,y0,z0), is such that 

z0 = f{x0, y0) (25) 

where f(x, y) represents the equation of the blade's suction or pressure surface in the xy 

plane perpendicular to the disk rotational axis. The suction and pressure surfaces are 

treated separately simply to have a well-posed problem, since /_1 cannot otherwise be 

defined univocally. Obviously, any perturbed position (x0,y0,z0) needs also satisfy such a 

constraint so as to guarantee full contact between blade and sensor as well as to preserve the 

condition of zero-intersection between them. That is achieved by computing z0 — f(x0, y0) 

via linear interpolation over the surface finite-element mesh. Uncertainty in sensor locations 

has been implemented by generating a statistical realization around the projection onto the 
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(26) 

xy plane of each sensor's position and by computing the corresponding modal information to 

be used within the estimation process. In order to avoid the results being artificially skewed 

due to the orientation of the blade with respect to the xy plane, the two-dimensional and 

normally-distributed realization is such as to be bounded by the projection of a circle of 

radius Lr centered at (x0,y0,z0) and tangent to the blade. In mathematical terms, in a 

coordinate system x y , centered and aligned with the axes of the ellipse created by the 

circle's projection onto the xy plane, the realization can be written as follows: 

xo~N(0,rx,/3) 

y'o~N(0,ry,/3) 

where rx> and r / are the measures of the ellipse's semi-axes, and a 3a limit has been uti- 

lized. Such a technique has been employed because of its simplicity as well as its capability 

to control the statistical realization so that it covers the area around a sensor's nominal 

position in a more regular fashion, without introducing extraneous sources of asymmetry 

in the estimates. 

A study on the impact of sensor location's uncertainty on the accuracy of the estima- 

tion technique was performed through Monte Carlo simulations where both sensors were 

perturbed, according to equation (26), with a reference radius Lr = 0.15 cm. A sample 

of the results is given in Figure 15. Illustrated in the figure is the histogram of the stress 

estimate's relative error associated with sensor 52 together with its representative proba- 

bility density function, constructed under the assumption that the sample data are part of 

a normally distributed population. The formulated assumption is, however, somewhat in 

contradiction with the skewness shown by the bar chart. The primary cause of such a be- 

havior is twofold: on the one hand, the modal quantities being perturbed (and interpolated 

upon) appear in the denominator of equation (6), which causes the scaling modal ratios to 

no longer have a normal distribution; on the other hand, the estimates' distributions are 

a one-dimensional synthesis of at least a two-dimensional spatial uncertainty, whose effect 

depends on the mode shapes and is furthermore filtered by the interpolation scheme. As 

a matter of fact, it was also determined that if the sensor's nominal position falls in the 

vicinity of a maximum or minimum of the excited mode shape, the estimates' histograms 
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Figure 15: Bladed disk: variability in the maximum-stress estimate due to uncertainty in 
the sensor locations (a^o = 1071.9 Hz). 

become even more skewed, thus making the assumption of normality less appropriate, and 

the estimation itself less meaningful. 

As shown by the previous results, response estimates are affected by sensor location. 

In order to investigate this aspect further, a sensitivity study was also conducted, where 

nine different nominal positions for each sensor were considered and perturbed as described 

earlier. The sensors were placed one on each blade surface, where three different nominal 

positions were considered chord-wise at three locations along the span. Depicted in Figure 

16 are the various nominal positions and realizations on the pressure surface for sensor Si, 

while Figure 17 shows the corresponding uncertainty levels in the response prediction, with 

the histograms associated with the probability curves not displayed for the sake of clarity. 

As observed also for the beam case, results show a dependence of the response estimate's 

accuracy upon a sensor location, with the relative error ranging from 5% up to 15%, in this 

particular case. Of course, this raises the issue of optimal positioning of the instrumentation 

to achieve better accuracy. It can be rather difficult to draw a clear-cut conclusion on where 
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Figure 16: Bladed disk: realization of the position S\ti (i = 1,... ,9) of sensor 5i on the 
blade's pressure surface. 

to place a sensor so as to minimize the error in the inference process. In fact, several factors 

may come into play, such as magnitudes of the modal quantities near the sensor locations or 

corresponding gradients, which may not be known a priori and typically are unknown until 

more information is available about the external forcing function or about which mode will 

presumably be excited. Regions of very low magnitude or strong gradients give rise to very 

large spreads in the estimates, whereas the prediction process fails when a sensor is placed 

rather close to a node of the given selected mode. Predicting the sensors' optimal positions 

can become even more challenging when double modes are excited, as the manner in which 

they superpose is dictated by equation (15) containing an implicit dependence upon the 

sensor locations for which optimization is indeed being pursued. On the other hand, modal 

ratios at the sensor positions could provide initial insight in the case of single modes. 

2.6.2    Modeling Uncertainty 

As previously exemplified for the beam-like blade, uncertainty in the finite-element 

model of the disk is introduced by perturbing the model mode shapes according to equation 
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Figure 17: Bladed disk: variability in the maximum-stress estimate due to uncertainty in 
the location Sij (I = 1,..., 9) of sensor Si (u>i$ = 1071.9 Hz). 

(19) and by using the modified quantities within the inference procedure. Three MAC 

configurations, each of which represents a different level of perturbation of the model mass- 

normalized modes, are shown in Figure 18, where the presence of numerical noise in the 

finite-element solution is also highlighted by the non-zero off-diagonal terms of the matrix 

corresponding to the no-perturbation scenario. The combined effect of sensor reading error 

and modeling uncertainty is depicted in Figures 19 and 20 for the double-mode case at 

frequency 839.37 Hz, where the only difference between the two graphs is the different 

normalization scheme used for the estimate. In this circumstance, according to Figure 19, 

distinct MAC configurations result in very similar spreads in the relative error of the stress 

estimate, while Figure 20 illustrates how a higher modal perturbation results in higher bias 

and lower variance. This was not always the observed trend, as other cases instead showed 

an increase both in bias and spread for the inferred stresses. An example of such a situation 

is illustrated in Figures 21 and 22 for the double mode at natural frequency 3366.4 Hz. 
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Figure 19:   Bladed disk:  variability in the maximum-stress estimate for different MAC 
matrices (u^i = U2,i = 839.37 Hz). 
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Figure 20:   Bladed disk:  variability in the maximum-stress estimate for different 
matrices (wi 1 = u>2,i = 839.37 Hz). 
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Figure 21:   Bladed disk:  variability in the maximum-stress estimate for different MAC 
matrices (a;3;6 = uj^e = 3366.4 Hz). 
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Figure 22:   Bladed disk:  variability in the maximum-stress estimate for different MAC 
matrices (u^e = ^4,6 = 3366.4 Hz). 
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2.7    Summary 

The impact of uncertainty upon a model-based approach for the prediction of a system's 

vibratory response has been assessed for two distinct models. Among the several classes of 

uncertainty that exist, attention was given primarily to instrumentation-based and system 

model inaccuracies, through a variation of sensor locations, measurement data, and mode 

shapes. Uncertainties have been modeled by randomly perturbing the nominal values of 

given quantities (e.g., test data or model input parameters) and their impact has been 

investigated through a probabilistic analysis via Monte Carlo simulations. 

The existence of sensor-based uncertainties highlighted the fact that an instrument's 

location may affect the accuracy and confidence level of a given response estimate both 

explicitly and implicitly. More in detail, in the presence of only measurement errors, the 

difference among the resulting variabilities in the estimated quantities is similar to the one 

observed in the case of only sensor location uncertainty. This trend originates from the 

locations themselves at which the response is measured and it indicates that the effects of 

both sources of uncertainty may not always be clearly separated. Of course, a more complex 

system geometry and the presence of double mode shapes make it more difficult to anticipate 

how uncertainty and inaccuracies propagate within the response inference process. 

System model assumptions and limitations constitute another source of uncertainty, 

as the model itself may be incapable of describing the real component in a complete and 

exhaustive fashion. Based on the obtained results, an increasing mismatch between the 

physical system's measured behavior and its numerical representation contributes to the 

amplification of the impact for any other source of uncertainty already affecting the accuracy 

of the prediction procedure. More specifically, a growing modeling uncertainty was observed 

to cause an increase in the estimate's bias and spread, or an increase in bias accompanied 

by a counterintuitive shrinking of its spread. Overall, modeling uncertainties result in a 

further lessening of the confidence level associated with the response estimates. 
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CHAPTER III 

STATISTICAL ANALYSIS OF VARIABILITY IN EXPERIMENTAL 

DATA 

3.1 Overview 

The previous chapter demonstrated the sensitivity of the stress prediction process to 

uncertainty in sensor location and geometric/material properties, where simulated mea- 

surement data were employed. Of course, in practical applications, the vibratory response 

of a dynamic structure is computed by means of a combination of both experimental and 

analytical results. Therefore, the analysis is herein extended and applied to real test data, 

so that the inherent physical uncertainties related to sensor placement, accuracy and orien- 

tation, gauge sensitivity and calibration, as well as the presence of noise in the data can be 

explicitly accounted for. Moreover, in the presence of real experimental data, any existing 

discrepancy between the physical system and its numerical model is emphasized further, 

thus making explicit the impact of modeling approximations upon the estimates' accuracy. 

The process is demonstrated on a set of experimental data obtained from tests on simple 

plate structures, and processed according to procedures used for engine blade testing. The 

analysis is aimed at providing initial insight in terms of isolating the various sources of 

uncertainty and error in a real experimental setting. 

3.2 Experimental Setup 

In the absence of experimental data for turbine blades, a series of experiments were 

conducted on three distinct 9 x 4 x 0.125 inch plates, each made of a different material, 

i.e. brass, copper and steel. Each plate was cantilevered along one of its width sides and 

instrumented with Ng — 11 Vishay uniaxial strain gauges, where sensor locations and ori- 

entations were maintained constant across all the experiments. Furthermore, the structure 

was excited by means of a Ling shaker with a maximum excitation frequency of up to 3000 

Hz for the brass and steel plates, and 4900 Hz for the copper structure.   The sampling 
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frequency was set to 9766 samples/sec, and various types of windows were employed for 

the excitation signal. Data acquisition was performed using the CADDMAS system [99], 

whereas the sensors were modeled using the software GAGEMAP II [27]. The freeware 

EDAS-DV [27] was instead used to analyze the experimental results acquired and processed 

by the CADDMAS software. The data blocks from the various acquisitions are used to con- 

struct the envelope spectra of the strains measured at every sensor, where each envelope is 

an amplitude plot displaying the maximum peak-to-peak value at each frequency, obtained 

via sweeping across all the data blocks. Moreover, Q-curve fitting is employed to fit the 

recorded points against a second-order curve so as to reconstruct the missing information. 

Listed in Tables 4 and 5 are the material properties and the sensors' position and orienta- 

tion, while Figure 23 depicts a model of the structure together with the sensor locations. 

Moreover, the test equipment and setup are shown in Figure 24 (courtesy of [99]). 

Table 4: Material properties and geometry. 

Brass Copper Steel 
Young's modulus E0 [psi] 15xl06 17xl06 29xlOö 

Density p0 [lb/in3] 0.3077 0.3227 0.2837 
Poisson ratio v0 0.34 0.343 0.32 
Length L0 [in] 9 9 9 
Width W0 [in] 4 4 4 
Thickness T0 [in] 0.125 0.125 0.125 

The test data were utilized to investigate the impact of various uncertainty sources 

(both experiment-based and model-driven ones) upon the confidence level associated with 

the estimated vibratory response, as well as their interaction with one another. 
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Figure 23: Model of the plate structure and sensor locations. 
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Table 5: Experiment setup. 

Position Measurement Direction ü 
Gauge No. x [in] V [in] z [in] ux Uy uz 

1 3.2307 4.8375 0.0 0.2071 -0.9783 0.0000 
2 0.7693 0.1125 0.0 -0.0360 -0.9994 0.0000 
3 3.8814 0.1334 0.0 0.1360 -0.9907 0.0000 
4 0.2339 6.6028 0.0 -0.7161 -0.6980 0.0000 
5 1.3846 0.3375 0.0 -0.3249 -0.9457 0.0000 
6 2.5535 6.0379 0.0 0.8061 0.5918 -0.0000 
7 2.5533 6.0676 0.125 0.7047 0.7095 -0.0000 
8 3.8818 0.1291 0.125 -0.4205 -0.9073 0.0000 
9 0.7725 0.1188 0.125 0.3503 -0.9366 -0.0000 
10 1.1013 8.8642 0.125 1.0000 -0.0000 -0.0000 
11 0.3866 6.3202 0.125 0.0361 0.9993 0.0000 

Figure 24: Test equipment. 
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3.3    Estimation Results 

In order to infer the critical vibratory response for the given plate structures, the re- 

sponse estimation procedure described in Section 2.2 was employed. The experiments were 

conducted without the use of strain rosettes, hence only one strain component was measured 

at each gauge location. Therefore, equivalent strain values were computed using equation 

(7) and converted into equivalent stresses upon multiplication by Young's modulus E0 in 

accordance with the procedure implemented in [2], with the understanding that the result- 

ing estimated stresses are representative of an equivalent uniaxial strain-stress state. At 

every peak frequency, various predictions of the maximum Von Mises stress can then be 

computed by means of a maximization process, performed separately on the information 

from each sensor. 

Results are herein illustrated in detail for the experimental data relative to the brass 

plate, whereas only a summary of the estimation results is provided for the copper and steel 

plates. Furthermore, the symbol for the estimated maximum Von Mises stress has been 

abbreviated to a* M , where references to sensor and peak numbers have been dropped for 

the sake of clarity. 

3.3.1    Mode Identification Results 

The inference technique consists of two steps: identification of the peak responses and 

corresponding best-fitting mode shapes, and estimation of the system's most critical re- 

sponse via combination and extrapolation from the model information and the available 

test data. For a given experiment, in order to identify the response peaks, the frequency 

spectra recorded by the sensors were combined into an averaged spectrum whose significant 

peaks were isolated by filtering out any sensor-averaged strain amplitude smaller than 1/4 

of the maximum averaged one. The process is illustrated for a single experiment conducted 

on the brass plate data in Figure 25, where the recorded spectra s(w, xs) (g = 1,..., Ng) 

and the sensor-averaged spectrum eavg(u;) are depicted together with the selected strain 

peak magnitudes. Since the threshold depends on the maximum averaged amplitude, it 

is worth noting that the number of peaks being detected and retained could vary from 

53 



experiment to experiment if sensor measurements were to exhibit a meaningful variability 

across them. Furthermore, the recorded peak frequencies up may also show a scatter across 

sensors as well as across repeated experiments. As a consequence of that, for each test, 

sensor-averaged peak amplitudes, identified by means of the averaged spectrum, are used 

to isolate the corresponding peak conditions on each of the measured spectra. Figure 26 

depicts the scatter in the recorded peak frequencies u>Pg (g = 1,... ,Ng) corresponding to 

the averaged peaks of Figure 25, where each set of peak frequencies is plotted against the 

natural frequency un of the corresponding mode shape, identified by means of equation (5) 

and illustrated in Figure 27. As it can be easily observed, the sensors consistently identify 

the various resonance conditions, which, however, are different from the natural frequencies 

computed by the system's finite-element model. A numerical quantification of the observed 

trend is given in Table 6, where mean \i and standard deviation a are calculated sensor-wise 

for each detected resonance condition p. The low scatter a in the measured peak frequen- 

cies indicates a proper installation and functioning of the various gauges, but provides no 

information in terms of quality and accuracy associated with the corresponding strain peak 

amplitudes. 

Table 6: Natural and sensor-averaged measured peak frequencies. 

Peak No. »M [Hz]* a(u)Pg) [Hz] w„ [Hz] 
p=l 30.87 1.48 35.31 (ls< mode) 
p=2 181.20 0 164.10 (2nd mode) 
p=3 524.54 0 617.00 (5th mode) 
p=4 1030.01 0 999.87 {7th mode) 
p=5 1138.64 2.96 1161.70 (8th mode) 

"9 = 1. 

3.3.2    Analysis of Estimation Correlation Results 

The availability of various sensors on the component under investigation allows for es- 

timating the accuracy of the estimation procedure described in Section 2.2, and assessing 

the effects of simplifying assumptions (e.g., the single-mode contribution at resonance) as 
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Figure 26: Measured peak frequencies vs. natural frequencies. 

well as various other sources of errors and uncertainty. These include, among others, mea- 

surement noise, location of the sensors, inaccuracies of the model, and differences between 

a measured quantity (e.g., strain averaged over the sensor area) and its effective local value. 

The quality of the estimates can be quantified through a direct comparison between the 

measured quantity at the i-th sensor's location x,, and its estimate based on the measure- 

ment at location Xj of the j-th gauge, which according to equation (6) is given by: 

eft- 
6p(Xjj 

ep(Xjj 

where the notation introduced in Section 2.2.2 is abbreviated as follows: 

e?   =   e(wp,xj) 

Consequently, an estimation coefficient &j can be defined as: 

(28) 

(29) 

where i,j = l,...,Ng. This coefficient should be equal to one in the case of perfect cor- 

relation between estimated and measured values, whereas the larger the deviation from 
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(a) 1st mode (b) 2nd mode 

(c) 5th mode (d) 7th mode 

(e) 8th mode 

Figure 27: Plate structure: mode shapes and Von Mises modal strain fields. 
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that value is, the higher the error introduced by the estimation process becomes. Coeffi- 

cients obtained for varying i,j = l,...,Ng populate a square matrix S of size Ng x Ng, 

which contains all possible combinations and whose components are related by the following 

relationship: 

sij — (■ (30) 

The correlation matrix 3 can be used to determine the presence of malfunctioning 

gauges, measurement outliers or sources of strong mismatch, due, for instance, to a sensor 

mounted near a modal node or a region with strong gradients for the measured quantity. 

Once the peak responses are isolated, the correlation matrix S can be constructed for 

each of them to evaluate how well the test results agree with the numerical analysis at that 

resonance condition. As an example, shown in Figures 28 and 29 are the results for two 

different peak frequencies, whose corresponding data of measured amplitudes are analyzed 

in two different ways. In one case, a detailed investigation is carried out for each pair of 

sensors by means of the matrix | loge(S)|, where the operator | loge(.)| has been utilized to 

convert H into a symmetric matrix and take into account the relationship between £y and 

£ji given in equation (30). Of course, as a result of the transformation, loge(£ij) and loge(£jj) 

(t, j = 1,..., Ng) are equally distant from the perfect-match condition (i.e., a Ng x Ng zero 

matrix), while that is not the case for £y- and ^. In the other case, a histogram is used to 

represent the overall agreement between test and model, where a log-normal distribution 

function has been employed to characterize the data. 

As it can be observed from the charts of Figures 28 and 29, the level of agreement 

between measured and estimated quantities may change significantly from peak to peak. 

More in detail, the estimate-to-measurement ratios range from 0.5 to 3 for the first peak, 

whereas the level of mismatch is overall higher for the fourth peak, especially for the fourth, 

fifth and seventh strain gauges. For a given sensor, this varying performance can be mostly 

associated with the fact that the sensor itself responds differently to different mode shapes. 

In fact, the sensor may be in a nodal area (where the level of noise may become comparable 

to the measured signal) or in a region of high strain gradient (where the measurement is 

affected by a higher error due to the averaging process over the contact surface of the strain 
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gauge). Of course, other more subtle issues may also add to the change in performance 

(e.g., dependence upon mutating environmental conditions at different load conditions, or 

varying model accuracy in the computation of different mode shapes). 

Another source of uncertainty and, hence, of reduced accuracy is given by the discrep- 

ancy in the measurements obtained from different, yet consistent, experiments. In the 

presence of a significant variability in a sensor's measurements across several experimental 

tests, it is safe to argue that the given sensor may be malfunctioning or incapable of fully 

capturing the physical behavior of the structure under the given load and environmental 

conditions. As a consequence, these measurements may need to be filtered out or weighed 

differently to account for the anomaly. As an example, illustrated in Figure 30 is the scatter 

in the strain amplitudes at the first and fourth peak of Table 6, measured by the same sen- 

sors in a series of distinct experiments. Moreover, Figure 31 shows a similar measurement 

variability for various resonance conditions, recorded in the same set of tests by the fifth 

and the eighth sensor. Despite the good agreement, across distinct experiments, among the 

recorded values for any given peak frequency, the measurements for the corresponding peak 

amplitude may still be affected by some significant variability. In fact, the measured data 

is not identical from test to test, and any existing difference may be further amplified by 

errors and approximations introduced through data-processing (e.g., the error due to the 

interpolation needed to reconstruct the spectrum from sampled noise-carrying information). 

More in detail, according to Figure 30, near the first resonance frequency, the eighth sensor 

exhibits a much larger spread in the measurements compared to the other gauges. Such a 

singular behavior highlights the possibility that the given sensor's readings could be erro- 

neous in some tests, and that they could be treated as potential outliers. The placement 

of such gauge in a region of high strain gradients may strongly impact the quality of its 

measurements, but may not be identified as a key source of error because of the compar- 

atively lower variability exhibited by similarly placed sensors. In the case of the fourth 

peak, instead, significant scatter can be observed for all sensors. In this circumstance, sen- 

sor 8 is again characterized by the largest measurement variability, but this behavior may 

not be univocally explained with measurement issues strictly related to that single gauge. 

60 



1       ■      Measurements [ 

.10- 

I 

II 

I                     " 

i ■     Measurements | 

i 

08 !     ' 

06 

i 
• ■ 

i 

*      ii 

c< I I I 
02 I ■ 

i   I 

Sensor No. 
1 2345B788 10        11 

Sensor No. 

(a) 1st peak (b) 4th peak 

Figure 30: Variability in the strain amplitudes at the first (a) and fourth (b) peak, mea- 
sured by each sensor in seven distinct experiments. 

Moreover, from a qualitative standpoint, the relative orders of magnitude among the mea- 

surements appear to be in agreement with the strain field for the seventh mode of Figure 

27. 

Illustrated in Figure 31 is the measurement scatter exhibited by sensors 5 and 8 at vari- 

ous peak frequencies. As pointed out by Figure 29, both sensors are characterized by some 

disagreement between estimated and recorded quantities, where that result was, of course, 

relative to a single test. The consistency in measurement across various experiments that 

is shown in Figure 31 seems to suggest that the aforementioned mismatch at sensor 5 could 

be due to an actual discrepancy with the model results, as this sensor behaves similarly 

to other gauges. As for the eighth strain gauge, its prominently changing behavior across 

experiments and excitation frequencies hints, instead, to the presence of a potential problem 

with the readings per se. As a matter of fact, this sensor is located near the plate's clamped 

edge where high strain gradients can be experienced for some of the resonance conditions, 

as indicated by Figure 27. As a consequence, its recordings may suffer further from the 

error introduced by measurement averaging over its contact surface. 

As it can be observed, the combination of all these pieces of information can prove to 

be a valuable tool to identify sources of uncertainty and errors, as well as pinpoint outliers, 
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Figure 31: Variability in the strain amplitudes at various resonance conditions, measured 
by the fifth (a) and eighth (b) gauge in seven distinct experiments. 

whose isolation is deemed to be necessary to increase the level of confidence associated with 

the estimated response. 

3.3.3    Analysis of Maximum-response Estimates 

Up to this point, the goodness of the experimental results has been investigated to- 

gether with their agreement with the model at the sensor locations themselves. The next 

step is to infer the system's response at other locations as well. As a result, the level of 

accuracy associated with these new estimates cannot be assessed, as previously done, by 

direct comparison, thus implying an inherently lower level of confidence in their values. In 

order to compensate for this aspect, a benchmark response value was computed for each 

experiment as a weighted average of an appropriately selected subset of estimates. More 

specifically, the response predictions associated with sensors i and j were assumed to be 

acceptable provided that: 

loge(0.8)<loge^<loge(1.2) (31) 

where a 20% level of mismatch between experiment and model was deemed to be within 

the norm. Furthermore, the predicted quantities were divided into groups, and weights for 

each of them were computed based on the size of their corresponding group. More in detail, 
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Figure 32: Estimation of the maximum Von Mises stress o*vu at the first (a) and fourth 
(b) peak, computed using sensor measurements from seven experiments. 

for each sensor i a set of predictions was constructed encompassing the estimate from the 

j-th gauge only if the constraint equation (31) were satisfied. Therefore, the estimates be- 

longing to a larger group were weighted more in light of the fact that more sensors were in 

agreement with one another. The result of this procedure is illustrated in Figure 32, where 

predictions for the maximum Von Mises stress are compared with the computed benchmark 

values (dotted line). More specifically, for a given peak condition, the eleven strain mea- 

surements from each experiment were combined using the procedure of Section 2.2.2 with 

appropriate modal ratios to estimate the maximum response. For the first peak, it can be 

observed that the dashed mean-value line, computed using all the estimates, agrees fairly 

well with the benchmark line; in fact, in agreement with the results of Figure 30, only sensor 

8 was excluded based on equation (31), while the use of a weighted average did not seem to 

have a strong impact. Overall, all the experiments agree well with one another exhibiting 

consistent variability in the stress predictions. Results, instead, show more scatter in the 

estimated response near the fourth peak frequency. The first three experiments are charac- 

terized by a spread which is more than double compared to the others. Furthermore, the 

estimates' mean and the benchmark value differ by the same order of magnitude suggesting 

the fact that some sensor measurements may be erroneous or in strong disagreement with 

63 



the model. As a consequence of these observations, the level of accuracy associated with 

such estimates becomes diminished. It is important to note, however, that the experiments 

were not conducted identically to one another, and that the change in spread could also 

be caused, to some extent, by differences in the measurement setup (e.g., tuning of the 

data-acquisition parameters). 

The results depicted in Figure 33 are exactly the same as those shown in Figure 32, 

except that they are grouped by sensors instead of by experiments. The observed trends 

clearly indicate a problem with sensors 4 and 8; the former is located near a nodal region for 

the 7th mode, while the latter is in a high-gradient zone for the 1st mode, hence potential 

inaccuracies in the finite-element solution at those locations may cause an amplification of 

any existing measurement variability. Findings also show that the response estimate may 

vary significantly when computed using different gauges. Besides the underlying measure- 

ment variability shown in Figures 30, the scatter is also caused by the extrapolation process 

involving locations on the structure for which the level of agreement between model and 

experiments is not known a priori and cannot be quantified better unless more gauges are 

placed on the component. In light of this, and in the presence of significant variability 

across sensors, it may become difficult to quantify the confidence level associated with any 

given estimate. 

Finally, the same analysis, described for the brass plate, was also conducted on a steel 

and a copper plate, whose results from the estimation procedure are summarized in Figures 

34 and 35 and highlight similar trends. 
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3-4    Data Processing 

■ 

The experimental data utilized in the previous sections for correlation analysis and 

response estimation were obtained via the data-processing procedure briefly outlined in 

Section 3.2. More in detail, each sensor's peak-hold spectrum was obtained by considering 

the envelope of a series of Fourier transforms performed upon a sequence of sample blocks 

comprising the response in time of the plate structures.  Furthermore, the block size was 

chosen to be 8192 samples per block, while the Blackman-Harris window was selected for 

the windowing process of the output signal. Obviously, these choices are not unique, but 

are often based on the experimenter's judgement and expertise. 

Presented next is a discussion on spectrum variability associated with such choices, 

specifically the one due to two data-processing parameters: window type and block size. 

3.4.1    Windowing 

Windowing is one of the techniques used to alleviate the problem of leakage affecting 

the quality of the frequency spectrum of a signal truncated in time. It consists of combining 

a specified known signal w(t) with the signal m(t) recorded by the data-acquisition device 

[26]: 

m(tn) = w(t)lt=tn ■ m(tn) (32) 

in which m(t) is the windowed signal and m(t) is the measured quantity, both known only 

at the sample time instants tn = nAt, where At is the time interval between two consecutive 

measurement acquisitions. Given the Fourier transforms M(w) and W(u>) of m(t) and w(t), 

respectively, the spectrum M(w) of the windowed signal is equal to 

M(u) = M(u) © W{u) (33) 

where the symbol © indicates the convolution-integral operator. In order to reconstruct the 

response's actual magnitude, M(UJ) must be multiplied by a window-specific gain Gw so as 

to compensate for the effect of signal attenuation due to windowing [38]. 

The impact of window selection in the processing of a system response's measured 

amplitudes is here investigated by considering six types of windows, which are depicted in 
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Table 7: Windows. 

Name Definition 

Rectangular w{n) = 1 , 0 < n < N - 1 

Hann w(n) = 0.5 l-cos(^)]  , 0<n<iV-l 

Blackman 
w(n)=   0.42 -0.5 cos (jf^) +0.08 cos (-ftzrA 

0<n<N-l 

Blackman-Harris 
w(n) =   a0+ai cos(^) + a2 cos(^) + o3 cos(^) 

-(iV - l)/2 < n < (iV - l)/2 
(ao = 0.35875, ai = 0.48829, aj = 0.14128, a3 = 0.01168) 

Bohman 
0< |n| < (JV - l)/2 

Tukey 
f 1                                         0 < \n\ < a^fi 

(a = 0.5) 

Figure 36 and whose discretized definitions in terms of time index n and sample size N are 

given in Table 7 [97]. Illustrated in Table 8 and Figures 37-38 is the effect of windowing 

upon the brass plate's peak strains, obtained at the fifth and eighth sensor locations using 

different windows types, whereas the results for the other sensors are reported in Table 9. 

In oder to evaluate the scatter at each gauge g and resonance p of Table 6, the percentage 

relative errors S, computed with respect to the mean values, and the coefficients of variation 

al\x of the strain amplitudes were used as figures of merit. Shown in Figures 37(b)-(c) 

and 38(b)-(c) are the mean and standard-deviation spectra constructed considering all six 

window-specific spectra, while Figures 37(d) and 38(d) depict the dependence upon window 

type of the strain peak amplitudes e\ and £g at the p-th resonance condition identified 

in Figures 37(a) and 38(a), respectively. The data reported in the tables, instead, were 

computed without considering the rectangular window to distinguish between windowed 

and non-windowed signals.   The use of a different window, as shown, has no impact on 
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(a) Rectangular window (b) Hann window 

(c) Blackman window (d) Blackman-Harris window 

1536 2048 

(e) Bohman window (f) Tukey window 

Figure 36: Windows (sample size iV = 2048). 
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the peak frequencies, but it introduces additional variability in the strain peak amplitudes, 

whose accuracy is already affected by measurement errors. As suggested by the tabulated 

results, the percentage relative error due to windowing can fluctuate significantly with peak 

values as high as about 26%. Figures 37(d) and 38(d) show how window selection seems 

to have a stronger impact in the case of lower-amplitude peaks: the higher the measured 

peak amplitude, the smaller its variability due to the use of a different window. Based on 

the difference in response amplitudes obtained with the rectangular window (i.e., the no- 

window case) and the other ones, Figure 38(d) also highlights how the effect of windowing 

is somewhat mitigated in the case of the lowest-amplitude fourth peak, if compared with 

its impact at the other resonance conditions. This absolute low impact, however, can still 

be responsible of a non-negligible variability when compared with the low signature of the 

measured signal. 

Overall, a particular window may rescale the peak amplitudes in such a way that the 

error being introduced in the processed data could become comparable with other sources 

of uncertainty. Of course, the numerical variability that was observed depends on the 

specific windows being considered, where the use of other window types may generate 

a different variability level in the peak amplitudes. The importance of the information 

at hand, however, is that, while windowing addresses the problem of leakage in signal 

processing, window selection can play an important role in terms of accuracy of the results. 

Table 8: Variability in measured strain amplitudes due to windowing: 5th and 8th gauge. 

Gauge No. Peak No. min(|«5|) [%] max(|(5|) [%] JW 
1 5.89 10.42 6.38 

5 2 1.88 3.45 2.11 
3 14.15 23.96 14.81 
1 6.51 11.38 6.99 

8 2 1.91 3.50 2.14 
3 13.60 22.99 14.22 
4 10.83 11.15 8.16 

Results based on a single experiment. Case of rectangular window excluded. 
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Table 9: Variability in measured strain peak amplitudes due to windowing. 

Gauge No. Peak No. min(|<5|) [%] max(|5|) [%] 5W 
1 5.46 9.59 5.88 

1 2 1.86 3.41 2.09 
3 15.19 25.31 15.70 
4 10.26 10.59 7.75 
1 5.81 10.28 6.30 

2 2 1.70 3.12 1.91 
3 12.38 21.16 13.05 
4 13.01 14.31 10.29 
1 5.86 10.36 6.35 

3 2 1.67 3.07 1.88 
3 12.70 21.41 13.25 
4 13.41 14.94 10.68 
2 2.93 5.38 3.28 

4 3 15.37 25.68 15.92 
4 10.55 10.97 7.98 
2 2.95 5.41 3.30 

6 3 15.50 25.90 16.06 
5 3.21 6.37 3.82 
1 5.45 9.56 5.87 

7 2 3.00 5.47 3.35 
3 15.45 25.78 15.99 
5 3.22 6.39 3.83 
1 6.01 10.63 6.51 

9 2 1.79 3.28 2.00 
3 13.25 22.49 13.89 
4 9.94 10.37 7.55 
2 2.90 5.27 3.22 
3 15.27 25.32 15.73 

10 4 10.78 11.10 8.13 
5 3.13 6.22 3.73 
1 5.45 9.56 5.87 

11 2 2.30 4.20 2.57 
3 12.80 21.69 13.41 
4 11.00 11.18 8.22 

Results based on a single experiment. Case of rectangular window excluded. 
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Figure 37: Variability due to window selection: spectral information from measurements 
at the 5th strain gauge. 
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3.4.2    Block Sizing 

The frequency resolution of a spectrum is a function of block size, where the larger the 

size of the blocks is, the higher the resolution of the block spectra becomes, thus leading 

ideally to a more accurate computation of the resonance peaks. In order to quantify the 

effect of block-size selection, six different values were considered, namely 512, 1024, 4096, 

8192 and 16384 samples per block. Larger block sizes were not considered so as to avoid 

the issue of flattening of a spectrum's magnitude induced by the necessary normalization of 

the Fourier transform with respect to the number of samples utilized for its computation. 

The effect of changes in this parameter is illustrated in Figure 39 for the strains recorded 

by the 5th and the 8th sensor and corresponding to the same peak conditions identified in 

Figures 37(a) and 38(a). Beyond a certain block size, it can be observed that the gain 

in frequency resolution is outweighed by a loss of information in terms of computed peak 

amplitudes. This phenomenon can be ascribed to the fact that blocks of different size have 

distinct frequency contents. Therefore, in contrast to the case of a frequency content equally 

present throughout the entire time signal, such lack of frequency-wise equivalency among 

the various blocks may cause the Fourier transform to distort the measured information 

and further misestimate the peak conditions. Moreover, the figure also indicates that this 

effect is not uniform across the various sensors and resonances; hence, it cannot be eas- 

ily predicted. Listed in Table 10 are the percentage relative errors and the coefficients of 

variation associated with the peaks recorded at all strain gauges, where results were com- 

puted without the case of 16384 samples/block as it was found to be responsible for large 

excursions in the error. Under this assumption, the selection of the block size may imply a 

maximum relative error of the order of 20% in most cases. Although other worse scenarios 

were observed, these were not included in the current analysis either because of the poor 

signal-to-noise ratios for certain combinations of peak and gauge, or because the variability 

was such that an experienced experimenter would adjust the data-processing parameters so 

as to avoid those occurrences. 
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Figure 39: Variability in measured strain amplitude for the p-th resonance due to block 
sizing: 5th and 8th gauge. 

3.5    Summary 

The experimental assessment of uncertainty propagation has shown how measurement 

errors, data-processing and model approximations can all result in a significant variability 

for the estimated response. In some cases, the spread in measurement (and hence in the 

estimates) across experiments for a given sensor could suggest a possible problem associated 

with that particular gauge or acquisition channel, whereas other scenarios may be more 

difficult to explain. In fact, despite consistent recordings throughout several experiments 

for a group of sensors, a scatter in the estimates may still occur, the cause of which may 

be a disagreement between analytical and test results (due, for instance, to inaccurate 

modeling or poor selection of the best-fitting mode shape), a non-uniform distribution of 

the measurement errors among the gauges (e.g., due to suboptimal sensor placement), or 

some combination of those and other causes. In all these circumstances, the use of cross 

validation for the inference technique at the sensor locations proves to be a suitable first- 

order tool to assess the overall goodness of the estimation procedure, as well as to identify 

and exclude some potential outliers. Benchmark values give also a valuable qualitative 

insight in terms of estimates' consistency within an experiment or across distinct tests, 
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as well as permit to assess the combined impact of different sources of uncertainty in the 

absence of other means of comparison. Moreover, despite the fact that measured peak 

frequencies are often used alone to match the forced response with a specific mode shape, 

the good uniformity in their measurements across various sensors and tests did not prove to 

constitute a comprehensive assessment of the overall goodness of the experimental results. 

Lastly, data-processing parameters together with the related issues of frequency resolution 

and leakage may also cause a reduction in the correlation between model and test data, and 

may lead to additional variability in the inferred response. 

The proper source of error or uncertainty may not always be clearly isolated due to 

strong intertwining among the various contributors. These findings, therefore, need to 

be integrated with a more thorough statistical characterization of the response prediction 

process, for which purpose Bayesian networks are investigated in the following chapters. 
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Table 10: Variability in measured strain peak amplitudes due to block sizing. 

Gauge No. Peak No. min(|«5|) [%] max(|<5|) [%] t'W 
1 8.42 20.73 11.86 

1 2 1.78 2.32 1.68 
3 16.03 21.62 16.25 
1 3.79 6.42 4.17 

2 2 1.61 2.49 1.61 
3 6.72 13.06 8.07 
1 3.80 6.47 4.19 

3 2 1.45 2.31 1.49 
3 5.79 10.69 7.33 

4 2 9.29 15.44 9.95 
3 14.28 17.64 14.57 
1 4.17 6.40 4.29 

5 2 1.82 2.31 1.70 
3 7.58 11.33 8.91 
1 8.58 20.96 12.00 

6 2 9.37 15.43 9.94 
3 14.69 17.82 14.77 
1 8.39 20.85 11.92 

7 2 8.49 14.20 9.10 
3 15.10 19.13 15.29 
1 5.20 11.08 6.69 

8 2 1.87 2.25 1.72 
3 7.21 10.79 8.63 
4 18.16 48.22 27.33 
1 3.47 7.70 4.91 

9 2 1.73 2.38 1.65 
3 5.93 11.04 7.40 
1 8.17 20.23 11.57 

10 2 7.61 11.95 7.86 
3 16.07 22.82 16.94 
1 8.49 20.69 11.85 

11 2 2.01 2.21 1.95 
3 5.52 10.78 7.10 

Results based on a single experiment. The case of 16384 samples/block not included in the calculations. 
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CHAPTER IV 

UNCERTAINTY MODELING VIA BAYESIAN NETWORKS 

4.1     Overview 

To date, uncertainty has been usually quantified by means of uncertainty propagation 

techniques (e.g., Monte Carlo simulations), where a statistical realization of a system's 

input parameters is propagated through a numerical model to construct the statistics of 

the system's outputs. As shown in the previous chapters, this approach of unidirectional 

propagation of uncertainties works well for sensitivity studies, but some limitations arise 

when data are available at the output level (as in the case of experiments) or at some in- 

termediate stage within the analysis. In such cases, the consequent backward propagation 

of information ought to be taken into consideration and properly modeled when using the 

given data to fine-tune the analysis. The feasibility of using a Bayesian Network (BN) to 

model multi-directional uncertainty propagation is herein investigated for the estimation 

of the modal parameters of a structural system with uncertain parameters. Estimation 

is performed through the usage of an analytical/numerical model of the system, with the 

assumption that a limited set of experimental data, available on input or output parame- 

ters, can be introduced as evidence to reduce any residual uncertainty. The procedure is 

first tested on a simple beam structure, and then extended to an evaluation of the modal 

quantities of a bladed-disk sector. 

4-2    Bayesian Networks 

A Bayesian network is a directed acyclic graph consisting of nodes representing relevant 

properties of a given system or process, and directed arcs (links) describing the probabilistic 

dependence between pairs of nodes [77, 79]. Each node is characterized with a set of ex- 

haustive and mutually exclusive values (either discrete or continuous ones) which represent 

alternative states of the property corresponding to that node. The direction of each node-to- 

node connection indicates a parent-child relationship, where no directed cycles are allowed 
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in the network. Nodes without parents axe referred to as root nodes, whose marginal prob- 

abilities or density are specified for each of their admissible discrete or continuous value, 

respectively. Conditional probabilities are specified for non-root nodes for each possible 

combination of its parent nodes' values, where conditional probability tables and distribu- 

tions are used for discrete and continuous variables, respectively. Both prior probabilities at 

the root nodes and conditional probabilities at the child nodes can be obtained by means of 

statistical learning [73]. A state space of the described nodes (i.e., the full joint probability) 

is then uniquely defined for all the nodes. The property of a Bayesian network most relevant 

to the problem at hand consists, however, in its ability to update the marginal probability 

distributions of all the nodes if new evidence is introduced at some node(s). This process 

is called abductive inference [80], and its use is suggested to update an initial estimate of 

uncertainty based on the introduced test results (evidence). For continuous variables, links 

are commonly assumed to be linear Gaussian, which means that any given child node is 

assumed to be a random variable X with a normal distribution N(/j,,cr), where the mean 

/x is linearly dependent upon the parent nodes' values, while the standard deviation o is 

independent of those parents. In this study, all physical quantities being considered are 

continuous and the aforementioned assumption has been adopted. 

In the presence of observed events, evidence is introduced in the form of assigned single- 

instance values for the corresponding nodes, which are therefore treated as deterministic 

quantities. These deterministic values are utilized to update the conditional probabilities 

associated with the remaining nodes, as well as to compute the posterior full joint probabili- 

ties of all the variables. In practice, evidence is also affected by uncertainty (e.g., inaccuracy 

in test measurements) and should be assessed in a statistical sense as well. Their determin- 

istic treatment is determined by the software package in use and such a limitation could be 

removed, for example, by adding to the network extra nodes describing the uncertainties 

inherently present within any evidence. This strategy has not been pursued at this stage 

so as to isolate other trends of interest and preserve the simple structure of the networks 

under consideration. Since the causal relationships among the physical parameters of the 

dynamical structural systems under consideration are already known, the network shall be 
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trained only to establish the conditional probabilities, while its dependence structure is al- 

ready defined. The Bayesian statistical analysis has been conducted using the open-source 

Matlab®-based Bayesian Net Toolbox (BNT) [73], where a parameter training algorithm 

based on the maximum-likelihood criterion was employed together with training data gen- 

erated via Monte Carlo simulations performed on given finite-element system models. 

4-3    BN-based Uncertainty Analysis on a Beam Structure 

The estimation of a beam's natural frequencies and their dependence upon system char- 

acteristics is considered here to investigate the effects of uncertainty both in the analytical 

model and in the model input parameters. A Bayesian network can be utilized to establish a 

statistical relationship among the data samples of input parameters and modal performance 

parameters, whose realizations may be obtained, for instance, via direct probabilistic sim- 

ulation. Furthermore, Bayesian networks also allow for the assessment of multi-directional 

propagation of uncertainty as well as evidence, available, for instance, through experimen- 

tal measurements of any subset of system input or output properties. Once its structure is 

established, the Bayesian network is trained using a given sample data set resulting from a 

Monte Carlo simulation in which normal distributions are assumed for the network root- 

node variables corresponding to the system input parameters describing the finite-element 

model. 

First, the effectiveness of uncertainty quantification via Bayesian networks is studied by 

investigating the effect of input uncertainty propagation on the natural frequencies. The 

propagation is modeled through two networks, whose structures depend upon the number 

of uncertain inputs being considered. In the first case, the parent node of a one-root-node 

network represents the material Young's modulus, while in the second configuration the 

cross sectional dimensions (thickness and width) are also included as parent nodes of a 

three-root-node network. Both networks have ten child nodes, each of which represents a 
■ 

natural frequency. Schematic representations of the two networks are shown in Figure 40. 

Before proceeding with uncertainty quantification, the fidelity associated with the net- 

work's probabilistic inference needs to be assessed with respect to the loss of accuracy due 
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(a) (b) 

Figure 40: One-root-node (a) and three-root-node (b) network topologies. 

to network modeling assumptions and erroneous training data. When connected to one 

another, two nodes are herein assumed to be linked through a linear Gaussian relationship, 

where this postulation may lead to non-negligible modeling inaccuracies in the presence 

of non-linear dependencies among the system's physical variables. To address the impact 

of this assumption on network accuracy, the one-root-node network depicted in Figure 40 

has been trained with two sets of training data, where a square-root transformation on the 

values of E has been considered in one of the sets. The training data has been generated 

via a Monte Carlo simulation, where the input parameter E has been assigned a normal 

distribution with a standard deviation cr(E) = 0.02ß(E). As an initial analysis, given the 

fast computation associated with such a simple structure, two different sample sizes were 

considered (i.e., 1000 and 5000 runs per simulation) to investigate their impact upon the 

parameter learning algorithm. It was observed that a larger sample size did not provide 

any significant improvement in the results' accuracy, but instead caused a more intense 

computational effort for convergence to be reached. As a consequence, all the Monte Carlo 

simulations carried out henceforth consisted of 1000 runs, in light also of the demanding 

computational cost associated with much more complex structures to be investigated next. 

Shown in Figure 41 is the comparison between the trained networks at the 2nd natu- 

ral frequency. The results are also compared with the probability density function of the 

training data themselves, obtained from the Monte Carlo simulation. Despite the theoret- 

ical linear relationship between natural frequencies and y/E for the beam structure, the 
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power transformation seems to increase the discrepancy between the parameters' distribu- 

tions before and after training, where no evidence was included to compute the marginal 

probabilities of the child nodes. This apparent incongruity is due to the fact that the square 

root of a Gaussian quantity is not Gaussian. It is, however, useful to notice that the error 

introduced by linearly regressing a non-linear relationship seems lower than the one gen- 

erated by the use of a non-Gaussian training data set to fit a perfectly linear relationship. 

In light of this deterioration in the parameters' statistical description, as well as the fact 

that the nature of the training data may, at times, be out of the analyst's control, no power 

transformation has been used for any of the following results, where linear regression be- 

comes therefore the main source of error in the network training process. 

Another important aspect to be taken into account is the capability of the network 

to accurately estimate system parameters even when the training data is affected by er- 

ror, e.g. a bias. That being the case, the network could be recalibrated by redefining 

the prior probability for any of the root nodes. The effect of a biased training data 

set upon the estimation error has been studied for the one-root-node network of Fig- 

ure 40. The network has been initially trained with a biased data set corresponding to 

E ~ N(n,a) = N(0.90 x 114GPa,0.018 x 114GPa), while the prior probability of the root 

node has then been changed to E ~ N(n,a) = JV(114GPa,0.02 x 114GPa), with a 10% 

bias being assumed for both the mean and the standard deviation. Depicted in Figure 42, 

the results of this recalibration indicate that an update of the prior probability causes a 

reduction in the bias associated with the natural frequencies, thus showing the capability 

of the network to overcome the effect of inaccurate biased training. Moreover, this reveals 

the ability of the network to establish consistent relationships among the node quantities, 

provided that all the training data sets are biased and/or skewed in a consistent way so 

that the intrinsic relationships between the variables are being preserved. Presented in the 

following sections are the results addressing direct and indirect propagation of uncertainty 

and evidence associated with both the one-root-node and the three-root-node Bayesian 

networks. 
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4.3.1    One-root-node Bayesian Network 

The one-root-node Bayesian network consists of eleven nodes. It represents a structural 

problem where an input parameter uncertainty is assumed for the beam's modulus of elas- 

ticity E and its impact on the first ten natural frequencies is investigated. The training 

data set has been obtained via Monte Carlo simulations on the finite-element model, under 

the assumption of normally distributed uncertainty for E. Furthermore, an intentional bias 

error has been introduced as a difference between the mean value of the normal distribution 

used in the Monte Carlo simulation itself, and the same quantity's value for the actual phys- 

ical system, whose input and performance parameters are supposedly observed via other 

means (e.g., experiments) and treated as deterministic in nature. As a note, results associ- 

ated with the simulated physical system's quantities will be herein referred to as "reference" 

or "true" values and identified by the subscript T. 

4-3.1.1    Direct Problem 

In the case of the simple Bayesian network of Figure 40, direct propagation of evidence 

corresponds to fixing Young's modulus E, the parent node, to the value 114 GPa, and 

computing the marginal probabilities associated with the natural frequencies, i.e. the child 

nodes. Table 11 illustrates the effect of such evidence inclusion on the nodes' statistical 

moments fi and a for a network initially affected by some bias, where the percentage relative 

error S for Wj is defined as follows: 

Sut = 100 x /*("*)-"*.*• (34) 

where the same definition is also used for the system input parameters. The effect is twofold: 

the bias is strongly diminished and the variability of almost all the frequencies is also 

reduced. Better improvement can be observed for the higher modes, while the variability 

associated with the first mode has changed only slightly. As indicated by Figures 41 and 

42, this effect is due to the training procedure. In fact, network training causes a change 

in the distributions of the various quantities with respect to their Monte Carlo simulation 

results, where this discrepancy is higher for the lower modes and practically vanishes for 
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Table 11: Beam: effect of evidence on root-node E upon the child nodes' marginal prob- 
abilities. 

BN with no evidence 

Reference Value u^x [Hz] ß(ui) [Hz] S[%] a(<Ji) [Hz] 
323.25 306.67 -5.13 10.47 
2007.5 1904.52 -5.13 21.61 
5541.5 5257.24 -5.13 53.83 
5636.5 5347.35 -5.13 54.72 
10643 10096.72 -5.13 102.08 
16911 16042.95 -5.13 161.72 
17159 16278.85 -5.13 164.09 
24897 23620.1 -5.13 237.86 
28187 26741.31 -5.13 269.24 
33663 31936.24 -5.13 321.48 

:  1 10 

BN with evidence E = 114 GPa 

Reference Value u^r [Hz] A»(wi) [Hz] *[%] a(wi) [Hz] 
323.25 323.68 0.13 10 
2007.5 2010.23 0.14 10 
5541.5 5549.05 0.14 10.01 
5636.5 5644.16 0.14 10.01 
10643 10657.15 0.13 10.02 
16911 16933.44 0.13 10.06 
17159 17182.43 0.14 10.06 
24897 24931.16 0.14 10.12 
28187 28225.62 0.14 10.16 
33663 33708.9 0.14 10.22 

: 1 10 

the higher ones. Due to the symmetric structure of the network, this behavior could be 

ascribed to the different orders of magnitude associated with each child node and its impact 

within the network. Moreover, as expected, the percentage relative error S is the same for 

all the nodes because of the network's symmetric layout and the nature of the relationship 

relating E to each natural frequency of the beam, where their numerical order is purely 

descriptive. A similar reasoning applies to the trend of the frequencies' variability once 

evidence is introduced. 
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training data used to establish the links in the network have been generated via a Monte 

87 

4-3.1.2   Inverse Problem 

As observed for the case of direct propagation, the introduction of evidence at the parent 

node can help the Bayesian network to better estimate the statistical parameters associated 

with any child node. The inverse problem consists of introducing a piece of evidence at some 

child node. In order to propagate throughout the entire network, the infused information 

has to travel backwards with respect to the nominal direction of certain node-to-node links. 

Despite the fact that the inverse problem is usually more complex to handle, it may be more 

useful in terms of updating a model's parameters, especially since evidence is often available 

at the output level. As an example, illustrated in Figures 43-46 is the impact of evidence 

infusion at the child nodes (i.e., known values of frequencies) upon the distributions of E and 

the 10t/l natural frequency. As the number of observations increases, i.e. the values of more 

natural frequencies are made available, the mean values of E and the remaining unknown 

natural frequencies approach closer to their corresponding reference values together with 

a steady reduction in their standard deviation. Of course, evidence becomes significantly 

more important when the network is affected by uncertainty in the training data (e.g., bias 

due to measurement inaccuracy). In the specific case, two training data sets are being 

compared, corresponding to E ~ N(ß,a) = N(0.90 x 114GPa,0.018 x 114GPa) (biased 

case) and E ~ N(/j,,a) = N(114 GPa, 0.02 x 114 GPa) (unbiased case). In the case of no 

bias within the training data, the effect of evidence is primarily focused on the variability 

associated with a given node's estimate (i.e., its mean value), whereas both mean and 

standard deviation of a node do benefit from the introduction of more and more evidence 

in the presence of bias. With regards to Figures 44 and 46, it is worth noting that the 

discrepancy in standard deviation between the bias and no-bias cases is exclusively due to 

different cr(E)'s employed to generate the two training data sets. 

4.3.2    Three-root-node Bayesian Network 

In the three-root-node Bayesian network, shown in Figure 40, the parent nodes represent 

Young's modulus E and the beam cross-section dimensions, width C and thickness T. The 
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Table 12: Beam: statistical moments of root nodes. 

Monte Carlo Sim.    BN (no evidence) 
Root Node /' a M a 
E [GPa] 
C [cm] 
T [cm] 

114.02 
15.32 

2 

2.29 
0.77 
0.1 

114.01 
15.33 

2 

2.29 
0.77 
0.14 

Table 13: Beam: statistical moments of child nodes. 

BN with E, C, T (no evidence) 
Child Node /i(wi) [Hz] a(cji) [Hz] 

W] 323.11 24.82 
W2 2006.57 138.95 
W3 5476.75 254.56 
W4 5698.34 159.7 
W5 10635.82 687 
U>6 16721.96 469.94 
U>7 17335.05 708.5 
LOs 24876.24 1447.27 
QJg 28187.81 283.72 
Wio 33631.84 1838.95 

Carlo simulation where each variable has been assumed to vary as a Gaussian distribution 

N(ß,ßfi), where the values ß = 2% for E and ß = 5% for C and T have been selected. 

Tables 12 and 13 list the first two statistical moments of the variables' probability density 

functions resulting from the training procedure. 

For a Bayesian network with more than one root node, the distinction between direct 

and inverse problems is not as well defined as in the one-root-node case. In fact, a unilateral 

direction of propagation of evidence cannot be clearly identified, as evidence introduced at 

any of the root nodes will affect both the child nodes and the other root nodes. Therefore, 

in this context, those cases where evidence is introduced at the root nodes will be denoted 

as "direct problems", whereas in the case of "inverse problems" evidence is introduced at 

the child nodes. 
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4-3.2.1    Direct Problem 

The results associated with observations on E, C, and T are listed in Tables 14-17, 

where a bias has been introduced in the form of a 10% error in their values associated with 

the "true" physical system. On the one hand, when considered separately, each piece of 

evidence seems to be incapable of reducing significantly either the bias or the variability 

of the nodes with respect to the no-evidence scenario. Out of the three, evidence on T 

has the strongest impact, while the network is rather insensitive to evidence on C. As a 

matter of fact, according to Bernoulli beam theory, a cantilevered beam's natural frequency 

is proportional to TvE, whereas there exists no dependence upon C. In light of this 

observation, the linear-link approximation only affects the arcs connected to E, whereas 

the non-null arcs originating from node C appear to be a mere fabrication of the training 

procedure. Such a situation highlights the potential negative consequences associated with 

the modeling within the network of weak causal relationships, which may still cause the 

network to respond to the inclusion of certain pieces of evidence whose impact should 

instead be theoretically null. Furthermore, given the symmetric topology of the Bayesian 

network with respect to each root node, the difference in sensitivity separately associated 

with E and T seems to be due primarily to the different power transformation relating 

each of them to the beam's natural frequencies. As an example, the marginal probabilities 

for the 5th natural frequency are illustrated in Figure 47 for the various types of evidence, 

where the statistical parameters used therein are those of Tables 14-16. On the other hand, 

as shown in Table 17, when observations on E, C and T are introduced concomitantly, the 

marginal probabilities of the child nodes are characterized by an even further reduction in 

their spread, as well as a stronger decrease in their bias error for the majority of the nodes. 

This behavior is in agreement with the expected trend between the network's decreasing 

variability and the increasing number of observed nodes. 

4-3.2.2   Inverse Problem 

The inclusion of evidence at the child nodes yields a monotonic decrease of the variability 

associated with the root nodes E, C, and T. The estimates of the mean values though do 
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Table 14: Beam: effect of evidence on E upon the nodes' marginal probabilities. 

Node Reference Value /i(Node) 5{%] cr(Node) 
E [GPa] 102.6 - - - 
C [cm] 13.77 15.33 11.33 0.77 
T [cm] 1.8 2 11.11 0.14 
wi [Hz] 276.07 306.92 11.17 24.61 
U>2 1717.5 1906.05 10.98 137.48 
W3 4753.4 5208.32 9.57 248.79 
U>4 5347.3 5407.07 1.12 148.6 
w5 9162.1 10103.12 10.27 678.62 
UJQ 14836 15885.56 7.07 438.88 
Wj 16043 16465.92 2.64 686.65 
W8 21630 23630.56 9.25 1425.47 
Wg 26741 26776.25 0.13 10.17 
wio 29393 31947.87 8.69 1807.58 

Table 15: Beam: effect of evidence on C upon the nodes' marginal probabilities. 

Node Reference Value /i(Node) S[%] cr(Node) 
E [GPa] 102.6 114.01 11.12 2.29 
C [cm] 13.77 - - - 
T[cm] 1.8 2 11.11 0.14 
u>i [Hz] 276.07 323.12 17.04 24.82 
W2 1717.5 2006.6 16.83 138.95 
W3 4753.4 5466.34 15 254.51 
W4 5347.3 5708.73 6.76 159.62 
W5 9162.1 10635.49 16.08 687 
UJQ 14836 16691.87 12.51 469.71 
U>7 16043 17364.16 8.24 708.35 
W8 21630 24874.08 15 1447.27 
U>9 26741 28187.88 5.41 283.72 
WlO 29393 33628.09 14.41 1838.95 
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Table 16: Beam: effect of evidence on T upon the nodes' marginal probabilities. 

Node Reference Value /x(Node) 5[%] cr(Node) 
E [GPa] 102.6 114.01 11.12 2.91 
C [cm] 13.77 15.33 11.33 0.77 
T [cm] 1.8 - - - 
wi [Hz] 276.07 291.02 5.42 10.52 
W2 1717.5 1810.84 5.43 22.55 
U>3 4753.4 5137.26 8.08 90.8 
U>4 5347.3 5512.76 3.09 92.76 
W5 9162.1 9667.24 5.51 107.64 

W6 14836 16172.73 9.01 269.84 
a»7 16043 16398.56 2.22 267.55 

W8 21630 22841.62 5.6 251.22 
U>9 26741 28187.84 5.41 283.72 
^10 29393 31051.94 5.64 339.83 

Table 17: Beam: effect of evidence on E, C and T upon the nodes' marginal probabilities. 

Node Reference Value /x(Node) 5{%] cr(Node) 
E [GPa] 102.6 - - - 
C[cm] 13.77 - - - 
T [cm] 1.8 - - - 
wi [Hz] 276.07 274.84 -0.45 10 
UJ2 1717.5 1710.36 -0.42 10.05 
UJ3 4753.4 4858.43 2.21 72.87 
UI4 5347.3 5231.89 -2.16 71.8 
^5 9162.1 9134.21 -0.3 11.75 
W6 14836 15306.24 3.17 210.63 
LJ-[ 16043 15558.54 -3.02 202.23 
UJs 21630 21593.78 -0.17 22.41 

LJ9 26741 26776.34 0.13 10.17 
Wio 29393 29364.22 -0.1 32.6 
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Figure 47: Beam: effect of evidence on the root nodes upon the probability of u>$. 

not necessarily improve monotonically as more observations become available. Examples of 

these trends are shown in Figures 48 and 49 for the modulus of elasticity E. 

As regards the child nodes, both the bias error and the standard deviation associated 

with each natural frequency reduce monotonically as the number of observations increases. 

Illustrated in Figures 50 and 51 are the absolute relative percentage error and the standard 

deviation, as a function of evidence, for the 10th natural frequency, where similar trends 

were also observed for the other child nodes. In the case of no bias being present in the 

training data, the non-monotonic behavior of the relative error can be explained as a simple 

manifestation of the network adjusting to the new evidence in the presence of non-linearities 

and internal numerical error. Furthermore, for the system at hand, such oscillations are of 

low magnitude and negligible, with a percentage relative error on any given estimate of the 

order of 0.1% or lower. 

The results obtained for the direct and inverse problems confirm the positive impact 

associated with the introduction of evidence within a Bayesian network, even though it 

may be more sensitive to certain nodes than others, as observed, for instance, for the 
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Figure 49: Beam: effect of evidence on the child nodes upon the variability of E. 
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direct problem. The observed trend is in agreement with beam theory according to which 

frequencies are more sensitive to thickness variations than to changes in Young's modulus. 

Furthermore, the modeling of causal relationships unwarranted by the data, but artificially 

created by the learning algorithm, may hinder the quality of the results by altering the 

effect of evidence infusion. Finally, it is expected that convergence to the reference values 

and consequent error reduction will become harder to achieve as the physics of the problem 

and the network's structure evolve in complexity, encompassing a higher number of nodes 

and/or links. 

4.3.3     Bayesian Network with Model Noise 

In practical situations certain quantities of a system are not explicitly represented within 

a network. For instance, that occurs when the variability on a given parameter is not 

observed or cannot be easily measured, or when network simplicity is being preferred to 

accuracy. As a consequence, the uncertainty in certain system output quantities due to the 

variability of non-modeled inputs appears in the form of noise within the modeled nodes 

of the network. In other words, the training data contain spurious uncertainty because its 

sources cannot be explicitly identified. This may be an analyst's desire in some cases, but 

in other circumstances it may simply originate from limitations in the analytical framework 

or the test setup. In order to address the effect of non-modeled phenomena, the one-root— 

node/ten-child-node Bayesian network with noise of Figure 52 was investigated, where E 

was the only input parameter included. Noise was introduced by training the given network 

with a data set generated via a Monte Carlo simulation in which E, C and T were all varied, 

with the understanding that C should play no role, at least from a theoretical standpoint. 

Shown in Figures 53 and 54 is a comparison between the given network and the layouts 

presented in the previous sections, where no bias error was introduced so as to isolate the 

effect of noise. 

In the absence of noise, the one-root-node network has the fastest response to evidence, 

whereas the introduction of noise reduces its sensitivity to evidence in one case (Figure 

53), and practically eliminates it in the other, as is the case for the variability of the 
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Figure 52: One-root-node Bayesian network with noise. 

lO"1 natural frequency (Figure 54). Both in the three-root-node network and in the one 

with noise, the spread of E shows similar trends, thus indicating that the effect of noise 

primarily concentrates on the child nodes since E, C, and T are indeed independent of one 

another. On the one hand, this elementary case study indicates that the presence of non- 

modeled uncertainty can make the response of the dependent nodes in a Bayesian network 

stiffer with respect to evidence, as noise in the training data inevitably contaminates the 

variables' interrelations. On the other hand, when properly verified for the problem at 

hand, the appearance of such stiffness could be interpreted as a warning sign that certain 

phenomena are not being fully captured and/or properly modeled. 

4-4    BN-based Uncertainty Analysis on a Bladed-disk Sector 

The procedure illustrated in the previous sections has also been employed to analyze a 

structurally more complex system, namely the disk sector described in Table 2 and depicted 

in Figure 2. The objective, once again, is to assess the feasibility of using a Bayesian network 

to integrate evidence, available for any part or input/output parameter of the system, and 

have it propagate throughout the entire statistical model for a consistent update of all the 

performance and input parameters of the system. Given the intense computational workload 

required by the Monte Carlo simulation, the number of runs used was set equal to 1000 

and no cyclic compatibility constraints were included at this stage, which, however, leads 

to no significant detriment to the objective and validity of this study in terms of system 

complexity. The use of an alternative technique (e.g., surrogate model) would be needed to 

reduce the larger computational effort associated with the full bladed disk. The number of 
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Table 18: Disk sector: physical systems and nominal model characteristics. 

Nominal Physical Physical Physical 
Quantity System Qo System Q\ System Q2 System Q3 

£ = 114 [GPa] E E 0.9E 0.9E 
p = 4430 [Kg/m3] P 0.97p 0.97/9 P 
fc = l k k k k 
wi [Hz] 259.45 263.43 249.91 246.14 
U>2 555.94 564.47 535.50 527.41 

0>3 1708.9 1735.1 1646.1 1621.2 

W4 1934.4 1964.1 1863.3 1835.2 
W5 3701.8 3758.6 3565.7 3511.8 
W6 4029.8 4091.6 3881.6 3823.0 

performance parameters was limited to the first six natural frequencies, while uncertainty 

was introduced for material properties (i.e., Young's modulus E and mass density p) and 

geometry, via random radial scaling of the entire sector. The geometry radial scaling factor 

k is herein used as a simplified characterization of manufacturing tolerances, under the 

constraints imposed by adjacent sectors in a fully modeled disk. For each of the case 

studies presented next, the training data sets were generated assuming that the quantities 

being varied followed a Gaussian distribution of the form N(p, ßp) with means equal to the 

values for a nominal system, and ß equal to 2%, 5% and 1.5% for E, p and k, respectively. 

In order to address the impact of possibly biased training data, evidence was also generated 

for physical systems with material properties different from those of the nominal model. A 

summary of the numerical values for the nominal system's model as well as the real systems 

under investigation is given in Table 18. 

4.4.1    One-root-node Bayesian Network 

In the case of the one-root-node Bayesian network depicted in Figure 40, uncertainty 

was introduced in the form of a normally distributed Young's modulus E ~ N(p,a) = 

JV(114GPa,0.02 x 114GPa), while mass density and scaling factor were assigned their 

nominal values. The necessary training data was obtained via a Monte Carlo simulation 

performed using the probabilistic toolbox within the commercial finite-element package 

ANSYS®. 
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4-4-1.1    Direct Problem 

As for the case of direct propagation, illustrated in Table 19 and Figures 55-56 is the 

effect of biased and unbiased training data upon the network's capability to estimate the 

system's modal performance parameters in the presence of evidence at the root node E. 

With no loss of generality, in this case as well as the following ones, biases have been 

embedded in the evidence rather than at the Monte Carlo simulation level so as to limit the 

computational effort. As shown in the table, the introduction of a piece of evidence at the 

root node E causes the same variability reduction for any of the child nodes, independently 

of the bias. The bias, however, affects the capability of the network to accurately estimate 

the system's natural frequencies. More specifically, in the presence of a shift in the reference 

frequencies, partly or entirely due to a discrepancy in mass density between the nominal 

system and the physical one, the evidence cannot lead to a decrease in such biases, as those 

are associated with a non-modeled source of uncertainty. Frequency biases due only to a 

wrong estimate of Young's modulus are, instead, reduced when evidence is included. 

Table 19: Disk sector: effect of evidence on E upon the child nodes' marginal probabilities. 

Monte Carlo BN BN 
Sim. No evidence Evidence on E 

*(«i) [Hz] 2.61 10.36 10.0 
o-(w2) 5.59 11.58 10.0 
ff(ws) 17.18 20.53 10.0 
<T(U4) 19.45 22.63 10.0 
cr(u5) 37.22 40.12 10.0 
<T(W6) 40.52 43.46 10.0 

4-4-1-2   Inverse Problem 

The inverse problem for the one-root-node Bayesian network consists of the introduction 

of evidence at any or all of the child nodes. Depicted in Figures 57-59 is the dependence 

of the random variables E and o>6 upon three distinct sets of evidence associated with the 

configurations of Table 18. As expected, the variability associated with each unknown node 

decreases as the amount of available evidence increases. Observations for the child nodes 
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Figure 57: Disk sector: effect of evidence on the child nodes upon the relative error on E. 

are input, for convenience, in a sequential order, and are assumed to be deterministic in 

nature, thus causing the curves in Figures 58 and 59 to eventually go to zero for any biased 

or unbiased evidence. While the process of evidence infusion is able to reduce the impact 

of biases for the natural frequencies, that is not the case for Young's modulus. On the 

contrary, as shown in Figure 57, the presence of bias in the mass density p alone causes a 

divergent effect for E, while it prevents the network from removing entirely a preexisting 

bias on E itself. In both cases, however, this network seems incapable of counteracting the 

effect of a non-modeled uncertainty associated with p. This may also be partially due to 

the non-linearities inherent in the structure not being fully captured under the assumption 

of node-to-node linear Gaussian links. 

4.4.2    Three-root-node Bayesian Network 

The three-root-node Bayesian network for the disk sector is similar to the one depicted 

in Figure 40, where the quantities C and T have been replaced, in this case, with the mass 

density p and the geometry scaling factor k.  The training data for the Bayesian network 
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is obtained through Monte Carlo simulations with E, p and k assumed to have Gaussian 

distributions of the form N(ß,ßp), with nominal values used as means, and ß set equal to 

2%, 5%, and 1.5%, respectively. Moreover, the effect of bias on this network was investigated 

by utilizing evidence associated with the system configurations Q\, Q2, and Q3 of Table 18. 

44-2.1    Direct Problem 

Direct propagation has been investigated for the four configurations given in Table 18. 

In the case of the nominal system Qo (i-e-> no bias in the data), evidence on p is characterized 

by the highest impact in terms of reduction in the variability associated with the natural 

frequencies. Evidence on E and k, instead, yield very minor improvement in the confidence 

of the remaining unknown nodes. Moreover, evidence applied separately on any pair of root 

nodes yields the same variability in the estimate of the third parent node. 

For the physical system Q\, in the presence of bias generated via a non-nominal mass 

density, the network appears to be rather insensitive to evidence on E and scaling factor k in 

terms of a decrease in uncertainty within the nodes. As for the node estimates themselves, 

they approach their reference values only when evidence on p is introduced, whereas the 

biases do not change significantly with respect to the zero-evidence scenario in the other 

cases. 

As for the physical system Q2, evidence on E yields very minor fluctuations in the 

variability of the other unknown nodes. In other words, the network seems to be stiffened 

to evidence on E when compared to the zero-evidence condition. The variability at the root- 

node level is also unaffected when information about the mass density p is made available, 

whereas the same evidence on p causes a significant reduction in the standard deviation 

of the child-node frequencies. Furthermore, the nodal standard deviations are also rather 

insensitive to evidence on k. As for the biases, only the observation on E causes a meaningful 

reduction in them. 

The physical system Q3 is characterized only by a biased Young's modulus. In this 

scenario, evidence on E eliminates the bias, but does not yield any improvement in the 

variability of the other nodes, which is, instead, greatly decreased when evidence on p 
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is introduced. On the contrary, evidence on k causes no relevant decrease both in the 

estimates' biases and their spreads. As an example, numerical results for the physical 

system Q2 are given in Table 20. 

In conclusion, since the structure is characterized by different sensitivity levels with 

respect to given input parameters, so does its representative Bayesian model. 

Table 20: Disk sector: effect of evidence on the root nodes upon the Bayesian network of 
system Q2- 

Percentage relative error ö [%} 

No Evidence Evidence on E Evidence on p Evidence on k 
E [GPa] 11.12 0 11.12 11.12 
P [Kg/m3] 3.09 3.09 0 3.09 
k -0.03 -0.03 -0.03 0 
«1 [Hz] 4.01 -1.19 5.57 3.98 
UJ2 4.01 -1.18 5.57 3.96 
W3 4.01 -1.2 5.57 3.96 
U>4 3.98 -1.22 5.55 3.95 
W5 3.97 -1.23 5.53 3.94 
U>6 3.98 -1.22 5.54 3.95 

Standard Deviation a 

No Evidence Evidence on E Evidence on p Evidence on k 
E [GPa] 2.39 0 2.39 2.39 
P [Kg/m3] 2767.99 2767.99 0 2767.99 
k 0.10 0.10 0.10 0 
wi [Hz] 86.08 86.04 27.58 82.20 
W2 206.35 206.27 109.90 175.04 
U>3 586.91 586.64 237.75 537.00 
a>4 637.73 637.41 195.36 607.50 
W5 1237.58 1236.97 426.84 1162.35 
W6 1364.66 1364.00 512.12 1265.68 

4-4-2.2   Inverse Problem 

In the case of observations available for the child nodes, the statistical moments as- 

sociated with all the remaining unobserved child nodes follow the same pattern shown in 

Figures 60 and 61 (solid lines). More in detail, their standard deviation a is a monotonically 
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decreasing function of evidence. As for the root nodes, Figure 62 indicates that the percent- 

age relative error for E is independent of evidence for configuration Q2, whereas the relative 

error on the mass density p increases from 3.1% for zero observations to 10.86% after six 

observations. The error associated with the scaling factor exhibits a peak value of 0.32% to 

drop then below 0.05% as more observations are made available. Trends are, instead, more 

regular when no bias is considered. As a consequence of these findings, it appears that the 

root-node estimates exhibit no clear dependence on evidence for different sources of bias. 

In fact, despite the expected reduction in variability as a function of evidence, the network 

may converge to values different from those corresponding to the given observations. Fur- 

thermore, the fact that in real scenarios no evidence is deterministic in nature should be 

taken into consideration for that introduces more uncertainty into the Bayesian network. 

This aspect may be addressed by modeling a given quantity and its measurement as two 

distinct nodes, as will be explained further in Chapter 5. 

4.4.3    Bayesian Network with Model Noise 

Similarly to what was previously done for the beam structure, the effect of noise has 

also been investigated for the disk sector, where it consists in additional uncertainty within 

a network due to non-modeled phenomena and/or causal relationships. This scenario has 

been herein simulated via a one-cause network trained with a data sample associated with 

three sources of uncertainty. Mass density and scaling factors were treated as hidden nodes, 

while E was explicitly modeled. Results are shown in Figure 60-63, where the three different 

network topologies of Figures 40 and 52 were compared against one another. Overall, the 

three-root-node network performs better than the one with noise in terms of filtering out the 

uncertainty associated with the child nodes, whereas its performance is worse at the root 

node E due to its low sensitivity to evidence, as already observed in the previous section. 

The one-root-node without noise, instead, performs satisfactorily for all the nodes and is 

able to steadily reduce the uncertainty introduced by the bias of physical system Qi- Of 

course, its higher convergence rate is primarily due to the simpler topology and lower level 

of inherent uncertainty within its nodes. 
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4.5    Summary 

The use of Bayesian networks allows for a statistically rigorous synthesis of the results 

from system models and experimental data that provides indirect information on the pa- 

rameters of the analytical models themselves. The feasibility of using Bayesian networks to 

model multi-directional uncertainty propagation has been assessed for a beam structure as 

well as a bladed disk sector where modal frequencies are evaluated as a function of material 

and geometric properties. Results show that the Bayesian network associated with a sys- 

tem retains well the system's inherent dependence and sensitivity trends among the given 

parameters, according to which it responds differently to various sources of evidence. As a 

consequence of such behavior, a particular piece of evidence may be more or less effective 

in estimating a system's input/output parameter as well as improving its confidence level, 

where, inevitably, such effectiveness is also influenced by network topology and quality of 

the training data. In fact, bias in the data could not always be removed, whereas the use of 

non-Gaussian data samples yielded even larger errors and uncertainty within the network's 

nodes and links. Overall, the use of a Bayesian network shows good potential in addressing, 

in a consistent manner, the problems of uncertainty propagation and quantification, as long 

as a good trade-off is reached among network topological complexity (i.e., the accuracy 

with which the physics of the problem is described), quality of the training data, and uncer- 

tainty in the evidence. Therefore, as discussed next, this statistical tool has been evaluated 

as a potential means to establish a unified framework for response prediction in structural 

dynamic applications. 
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CHAPTER V 

BAYESIAN VIBRATORY RESPONSE ESTIMATION 

5.1    Response Inference via Bayesian Networks 

In order to combine information from the experiments with the knowledge from the 

analytical model, and account for variability from both, a Bayesian representation of the 

inference technique is constructed which permits the quantification and reduction of un- 

certainty as a function of the available experimental data. This process of integration is 

illustrated in Figure 64 for which three fundamental steps can be identified: 

• Creation of an analytical/numerical experimentation framework representing the given 

real/experimental conditions; 

• Establishment of a Bayesian network topology for response inference and population 

of its elements by means of the simulated experimental data; and 

• Infusion of the real test data for the updating of the prior statistical information 

within the network. 

Next, the simulation environment and the Bayesian network topology adopted for the as- 

sessment of a system's vibratory response are presented. It is to be reminded that the 

modal-based inference scheme is applied separately to each resonance condition. Hence, 

the Bayesian network is also resonance-specific and computation of its prior information is 

needed at each of those conditions. 

5.1.1     Equivalent Numerical Experimentation 

The first step in the uncertainty-quantification process is the construction of a simulated- 

experiment environment (e.g., a finite-element forced-response analysis) equivalent to the 

actual test setup, where equivalency is defined in terms of comparable levels of uncertainty 

within the results generated via the numerical/analytical framework and the corresponding 
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test data. In practical applications, not all the sources of uncertainty are detectable or 

observable, nor their impact can always be isolated in a comprehensive way. In this sense, 

simulated experimentation is not meant to duplicate reality, but to identify a set QE of 

explanatory factors through which physical observations and corresponding uncertainties 

can be "equivalently" accounted for, even though such a set might not be at all exhaustive 

due to analytical limitations as well as a lack of complete knowledge about the structure 

and its true state. In fact, 

e^ = {öf,t = i,...,Ar£}ger = {öj,i = i,...,ivT} (35) 

where 0T represents, instead, the set of quantities, often unknown, which fully describe 

the physical system and its inherent random nature. Given an analytical experiment en- 

vironment, the method of direct propagation of input-parameter uncertainties can be used 

to identify suitable sets QE for any specific structure and loading condition, as well as to 

establish the statistical cause-effect relationships necessary to construct a Bayesian network. 

Furthermore, this approach also serves the purpose of a screening test, as it pinpoints which 

parameters, among the ones being investigated, are mostly responsible for the variability in 

the system's response, and which ones could be neglected with minimal loss of information. 

Besides reducing the number of nodes to be modeled within a Bayesian network, a screening 

test also permits to exclude cause-effect arcs which would otherwise be rather weak, and 

hence unresponsive to the propagation of evidence through them. This unresponsiveness 

leads to two main effects. On the one hand, a node whose connections to other nodes are 

weak can be updated effectively only through evidence infusion at that same node, as any 

information included at any other nodes will be damped out or will not propagate to it. 

For the same reason, evidence introduced at that node will also transfer weakly or not at 

all to its parent and child nodes and its effect will be therefore isolated. On the other hand, 

there is always the risk that the training procedure may establish a link between a pair of 

nodes which is stronger than what observed through the sensitivity analysis, thus explaining 

the variability in the data differently and leading to posterior probabilities for the network 

nodes that are unwarranted by the data. 
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According to the proposed response-estimation technique, in order to train a Bayesian 

network, data associated with both forced-response and modal analyses are to be generated. 

The commonly used approach of direct uncertainty propagation through Monte Carlo sim- 

ulations may, however, incur a high computational cost, even for simple structures. There- 

fore, surrogate models based on standard polynomial interpolation [97] have been adopted 

to limit the number of finite-element analyses to be executed. More specifically, spline 

interpolation was used in the case of harmonic analyses to alleviate the dependance upon 

the spectrum's frequency resolution Aw. In fact, for a fixed value of Aw, the accuracy 

with which the response at resonance is computed varies as a function of the values of the 

independent-parameter vector 6E 0E ftE .   As a consequence of that, the peak 

response, computed at any given point on the structure, exhibits a non-continuous behavior 

with respect to 6B which hinders the use of a continuous analytical model to represent 

better their relationship and smoothen the observed discontinuities. As an alternative to 

the use of spline interpolation, Aw could be optimized, through some iterative process, for 

each value of 0E, or a very high frequency resolution could be employed to interrogate the 

entire domain of 0E, with consequent increase in the computational cost in both cases. 

Once the surrogate models relating peak responses and modal quantities to the indepen- 

dent parameters are established, uncertainty can be propagated by assigning appropriate 

probability density functions to the elements of GB, and the corresponding Bayesian net- 

work can be populated and trained. More precisely, given a particular structure subject 

to an external harmonic load, let Aw be the range of the excitation frequency w, sampled 

at values wa (s = 1,..., Nu) and containing only one resonance condition at wp; also, let 

(Of,..., dfj ) be a Nd-case Design Of Experiments (DOE) on the NE independent parame- 

ters comprising 6E (e.g., material properties, geometric quantities and others). For the t-th 

(i = l,...,Nd) simulated experiment (i.e., a harmonic analysis), the computed sampled 

measurements eg(ws,d
E) at the sensor location x9 (g = l,...,Ng) are used as an input 

to a standard interpolating-spline scheme, herein indicated with the operator Tw[.]. As a 

result, the entire forced response can be constructed over the entire frequency domain Aw 

and the p-th peak frequency wp(d
E) for the i-th DOE run can be estimated together with 
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its corresponding response peak amplitude Sg(0f): 

e*(Of)=max{ru[eg(QB,e?)]} (36) 

Once the resonance conditions are computed for all the Nj cases, such information is utilized 

to construct other surrogate models, via the interpolation operator TE [.], whose validity is 

limited to the domain of 6E spanned by the design of experiments itself: 

£P(0*) = TE[££(0f)] (37) 

vP(0s) = TB[up(ef)] (38) 

where wv{6E) and £g(0E) represent, respectively, the functional dependences of the p-th 

resonance frequency, recorded at the g-th sensor location, and the corresponding peak am- 

plitude of the response being considered (e.g., strain) upon the vector 6B. 

Obviously, in the case of the natural frequencies and the modal quantities e(x) (e.g., 

modal strains, modal displacements, etc.), no surrogate model is defined in the frequency 

domain, but only surrogate models in terms of 0E are to be established. An example of 

the aforementioned process is illustrated in Figures 65 and 66, for the cases, respectively, 

of harmonic and modal strain amplitudes of a plate subject to a base excitation, where 

results were obtained via a grid-like 25-run design of experiments performed in a domain of 

6E = [L,W], where L and W are the plate's length and width, respectively. While neural 

networks were initially considered, surrogate models based on polynomial interpolation have 

been observed to perform well for the various ranges of excitation frequency being consid- 

ered. Also, the use of more flexible surrogate models (e.g., neural networks or kriging) was 

not deemed necessary because if a polynomial meta-model were to strongly underfit the 

data at a sensor location, this behavior could be interpreted as a warning sign that the use 

of that sensor data for training a linear Gaussian network could generate a similar underra- 

ting problem, thus hampering the statistical analysis. The size of the design of experiments 

needs to be adjusted depending on the excitation frequencies being considered and may 

need to be increased for higher frequency ranges to better capture stronger non-linearities 

in the vibratory response, even though the obtained accuracy may still not be good enough 
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Figure 65: Plate's strain amplitude eg at the g-th sensor location (g = 4) and near the 
p-th resonance condition (p = 1), computed for TV^ = 25. 

in the presence of strong gradients, as depicted in Figure 66 in the case of the modal strain 

amplitudes for modes 6 and 8. Besides illustrating the issue of strong gradients, Figure 

66 also highlights the appearance of nodal regions within the domain of 6E for the given 

sensors. A sensor located in a nodal region usually yields both a low signal-to-noise ratio in 

the test measurements and numerical noise in the corresponding modal quantities. There- 

fore, such a sensor should not be modeled within the Bayesian network so as to avoid a loss 

in accuracy as well as singularities in the response prediction. Also to be excluded from 

the network are those sensors at whose locations the forced responses and/or the modal 

quantities of interest exhibit a very low sensitivity with respect to the independent variable 

9E. In fact, under these circumstances, the network training algorithm may not converge 

entirely because of the presence of nodes with a very small variance, behaving, in essence, 

as constant quantities rather than as random variables. 

Overall, the use of a surrogate model in lieu of direct Monte Carlo simulations provides 

advantages both at the computational level as well as in terms of gained information, where 

the amount of error introduced by the interpolating schemes can be reduced by increasing 

the frequency resolution and/or the size of the design of experiments. In some circum- 

stances, however, the direct-sampling approach may be unavoidable should the vibratory 
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Figure 66: Plate's modal strain amplitudes e^, computed at the g-th sensor location for 
the n-th mode. 

response exhibit a zigzag behavior with respect to the input parameters. That could be 

the case in the presence of geometric uncertainties whose modeling requires the use of a 

finite-element mesh that needs to be regenerated at every computational run instead of 

being scaled up or down. In fact, the consequent variations in the domain discretization 

become responsible for the introduction of numerical noise which translates into a jittery 

behavior of the solution, difficult to describe accurately with smooth surrogate models. 

5.1.2    Bayesian Network: Topology Selection and Training 

According to the inference scheme presented in Section 2.2, four groups of nodes can 

be herein identified for the n-th resonance and mode: the first group consists of indepen- 

dent quantities included in the set O
B
 and/or GT, and describing the system's properties 

(e.g., material characteristics or geometric parameters) with respect to which certain un- 

certainties are parameterized; the second set comprises the "modal nodes" (i.e., the modal 

ratios e^fc/ek and eM/e£, and the natural frequency uin) identifying the modal quantities 

of interest, computed at the sensor locations (1 < i, k < Ng); the third group includes 

the "harmonic nodes" representing the computed and estimated forced-response quantities 

(i.e., the true peak amplitude e* at the reference sensor k, the estimates e\ ,k at the other 
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Figure 67: Bayesian network topology T\ 

locations, and the maximum-response estimate e*M); and finally, the fourth set encompasses 

the "measurement nodes" (i.e., the sensor measurements £™, e^\k at the recorded peak 

frequency LJ™), which consists of the actual outputs from the measuring devices. In order 

to find the most suitable way to model the uncertainty in the response prediction scheme, 

various network structures were taken into consideration, with a focus mainly on the three 

topologies, 7\, T2 and T3, illustrated in Figures 67-69. Despite looking somewhat similar to 

one another, these three network structures do differ significantly from a conceptual stand- 

point. 

Network topology T\ is based on the assumption that 0E = 6T, which implies that 

all the factors responsible for the observed uncertainties are fully observable and could 

be modeled. This hypothesis is not entirely realistic, especially for complex systems and 

experimental setups, where a myriad of unobservable sources of uncertainties is present. 

Furthermore, such a net cannot account for the poor correlation 2 between the physical 

system (or forced-/-response test data) and the analytical model (or mode shapes). Besides 

measurement errors, any unsatisfactory correlation (and consequent response variability) 
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Figure 68: Bayesian network topology Ti- 

between the physical system's true state and its system model's nominal state may repre- 

sent an important contributor to uncertainty. Such a scenario, however, cannot be modeled 

explicitly with topology Xi because harmonic and modal nodes share the same set of root 

nodes. An artificial stratagem would be to calculate each element of 2 using a modal ratio 

associated with a realization of the quantities comprising the set 0E different from the 

one used to obtain the simulated forced response. Such an expedient, however, destroys 

the cause-effect relationships linking £j and ei/ej to e* (i ^ j), thus causing the Bayesian 

network to perform extremely poorly in terms of evidence propagation. 

Network topology Ti no longer contains the hypothesis QE = 9T. This gives the free- 

dom to choose 0E to be equal to QT, or just be a subset of it based, for instance, on 

given design criteria (e.g., network complexity). The explicit modeling of the elements of 

GT within the network implies, however, that a complete knowledge is available about the 

factors responsible for the variability and uncertainty present in the data. In practical ap- 

plications, however, this knowledge may not be accessible. The distinction between 0E and 

6T allows to account easily for those cases of poor correlation between a physical system 
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and its model, even in the event that the two sets contain the same input parameters, thanks 

to the fact that two different sample populations for each parameter can be used to pop- 

ulate the harmonic and the modal nodes. Nevertheless, a clear drawback to this approach 

is represented by the inability of the network to have the two sets of input-parameter root 

nodes, 0E and 6T, converge to the same mean values upon the introduction of evidence. 

This behavior is due primarily to the error introduced by the modeling, through linear arcs, 

of the various non-linear cause-effect relationships between the nodes. In fact, if evidence is 

introduced, for instance, at node e* and propagated backwards to 0E and 6T, the different 

levels of error introduced by the linear approximation along the two distinct paths of links 

become responsible for the observed discrepancy between QE and 0r. In order to resolve 

this difference, due to model underfitting, an off-line update procedure would be necessary 

to have both sets of root nodes converge to one set of values. An alternative could be to 

employ the root nodes characterized by a lower posterior variance as reference for their 

counterparts and infuse their posterior information as additional evidence. A possible issue 

would, then, be that the Bayesian network might become over-constrained with consequent 

forced steering of its statistical parameters. 

Finally, illustrated in Figure 69 is the network structure T3 which has been developed 

and adopted to model the response prediction scheme under uncertainty. The proposed 

topology is able to address the aforementioned issues in the following manner: 

• Regardless of the parameters actually employed to generate the scatter in the sim- 

ulated measurements, such variability can be ascribed to other factors as well, since 

none of the former ones is explicitly modeled in the network. This is in agreement with 

the idea of simulated experiments not being a duplicate of reality, but an equivalent 

representation of it; 

• Measurement uncertainty and errors associated with the matching of the actual struc- 

ture with a nominal model are consistently accounted for; and 

• No hypothesis is necessary when constructing the network in terms of the completeness 

of the knowledge at hand.   Of course, the more information is available, the more 
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Figure 69: Bayesian network topology T3. 

educated the selection of the root nodes included in the set QE can be, and the better 

the uncertainty can be quantified and reduced through evidence infusion. 

Once the structure of the network is fixed, the next step is to populate its elements. 

Training data can be divided into two types: the first type includes the sample data obtained 

from the simulated modal and forced-response analyses, and used to establish the links 

among the root, the modal and the harmonic nodes; the second type contains the data 

that directly relates to the uncertainty embedded within the experimental measurements, 

which is responsible for how given computed nodes are connected to their measurement- 

node counterparts. On the one hand, the uncertainty propagated through the simulated 

experiments can be assigned based on the available expertise, or arbitrarily in the presence 

of limited knowledge (e.g., unknown tolerances associated with a particular manufacturing 

process), as long as the simulated response is comparable with the measured response in a 

statistical sense. On the other hand, the training data necessary to connect the measurement 

nodes to the rest of the network is a function of the error r) associated with the particular 

instrumentation in use.   According to the network's underlying assumption of Gaussian 
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nodes, the measurement error 77 is also assumed to be normally distributed; hence, the 

following relationships are established for each physical quantity: 

ef     = ek + Ae Tie 

e?     =e* + Aer,e     (i^k) (39) 

where    r)e ~ N(0,aE) 

r)u~N(0,au) 

The non-dimensional standard deviations ae and aw characterize, respectively, the vari- 

ability in peak amplitude and peak frequency, while measurement accuracy is expressed in 

terms of the factors Ae and A^ whose values are chosen based on the scatter in the physical 

quantities due to uncertainty at the root-node level. In the ideal case of infinite accuracy 

(zero (j's), the measurement nodes are a mere image of their counterparts and their links 

carry no additional statistical information; on the other hand, the higher the measurement 

errors present in the training data are (non-zero c's), the more experimental uncertainty 

can be modeled in the network until a limit is reached at which the physical quantities 

and their measurements are no longer correlated, and their links actually destabilize the 

network. 

In order to assess the network's ability to properly update itself upon evidence infusion, 

each node's supposedly known true value is compared against the mean value of its posterior 

probability function. For a given true state 0E, e^klek, eM/efc, gk, «^1*^.^*1 $$*i ft», «3? 

of the network and a specific evidence scenario (i.e., a subset of observed nodes), a metric 

8 has been adopted to evaluate how well the posterior mean ß of a queried node agrees 

with its assumed true state. For instance, for node ek and its true-state realization ek, 5 is 

defined as follows: 

M (£fc) - £fc 6 = 100 x 
Ae* 

(40) 

where Ae* is the node's range of variability observed in the set of data used for validation. 

As done for ek, the percentage relative error S can also be defined for all the other queried 

nodes in the network, while it defaults to a value of zero for the observed nodes. Moreover, 
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given a sample population of states, mean, standard deviation, and confidence intervals 

for each nodal 6 can be obtained for any evidence scenario and can be used to assess the 

goodness of network updating in a statistical sense. Since only the measurement nodes 

are observable in an experiment, complete states for the network can only be computed by 

means of simulation, but their use in the computation of 6 still provides valuable information 

in terms of the accuracy to be expected from the network when tracking the nodes' states 

associated with actual experimental observations. 

In the following sections, the proposed methodology and its performance in quantifying 

uncertainty are investigated for two vibration problems regarding a one-dimensional beam 

and a three-dimensional plate structure. It is to be noted that the response e considered 

for the beam structure consists of the axial stress, with results to be interpreted in SI units; 

on the other hand, strains were computed for the plate whose geometric parameters were 

expressed in British units, namely inches. Moreover, the notation introduced in equation 

(28) has been further simplified by removing the indices referring to the peak number and 

the sensor used as reference for the estimation process. 

5.2    One-dimensional Problem: Beam Structure 

Analyses on the response inference technique and its Bayesian-network implementation 

have been conducted at first on a one-dimensional fixed-free beam structure subject to a 

base excitation with frequency sweeping across the second natural frequency. In these sim- 

ulated experiments, the vibratory response of the structure, in the form of axial stresses, 

was recorded at nine locations along the span, with sensor g placed at a distance of 0.1 g L0 

(g = 1,..., 9) from the fixed end of the beam, the nominal length of which is L0 = 1 m. 

Contrary to the topology shown in Figure 69, modal ratios could not be modeled explic- 

itly within the network because of their invariance with respect to certain input parameters, 

as that would lead to the modeling of deterministic nodes. Hence, the modal stress at each 

sensor location was treated as a separate node. As a result, any modeled difference between 

the actual system and its nominal analytical representation was also, de facto, absent within 

the network and had no impact on the statistical results. 
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Presented next are two cases constructed assuming input-parameter uncertainties on 

geometry, material properties, and measurements. In these and all the other case studies, 

the Bayesian network has been trained using at least 3000 samples per node, and it has 

been validated utilizing 1000 simulated true states of the structure being considered. 

5.2.1    Uncertainty in Geometry 

The case of uncertainty in the beam's length L and thickness T is illustrated in Figures 

70 and 71 for a two-gauge network with no measurement nodes. Shown in the figures is 

the network's performance in predicting a single true state and reducing the corresponding 

variability in the case of observations introduced, in sequence, at nodes £3, £9, and W2- Any 

single one of the first two pieces of evidence is sufficient to update the maximum-response 

ß(s*M) to its correct value, even though both of them have no effect on the root and modal 

nodes, which are, instead, updated only after the information on the natural frequency U2 

is added. Unless the zero-evidence state of the network is close to the true state of the 

system, the update is consistently inaccurate for the root nodes because there are infinitely 

many combinations of length /x(L) and width (i(T) which can yield the given measured 

frequency. As a result, the modal stresses also do not converge to their true values, even 

though their update does not destroy the intrinsic relationship between a forced-response 

ratio, at a point on the structure, and its corresponding modal ratio. Such a behavior does 

not constitute a limitation of the Bayesian network per se, but simply a consequence of the 

information about the true state being insufficient and/or redundant. In fact, in conjunction 

with the mode shape being known short of a scaling factor, additional degrees of freedom 

emerge due to the modal ratios being constant with respect to L and T, a phenomenon 

which will unlikely be as important in realistic situations. As illustrated in Figure 72, the 

inclusion of two additional sensor nodes within the network does not yield any improvement 

in terms of convergence for the root and modal quantities (i.e., natural frequency and modal 

stresses). In fact, their percentage relative error S does not vary significantly as evidence is 

sequentially added at the measurement nodes, whereas the uncertainty associated with the 

maximum-response estimate decreases steadily. 
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Figure 70: Beam structure: comparison between true and expected state of a two-gauge 
Bayesian network in the presence of geometric uncertainty in L and T. 
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Figure 71:   Beam structure: standard deviations at the nodes of a two-gauge Bayesian 
network in the presence of geometric uncertainty in L and T. 
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Figure 72: Beam structure: prediction error 5 in the presence of geometric uncertainty in 
L and T, for a four-gauge Bayesian network. 

5.2.2    Material Properties Uncertainties 

Uncertainties in Young's modulus E and damping ratio £ have also been considered 

with standard deviations equal to 3% and 10% of their nominal values 114 GPa and 0.02, 

respectively. As in the previous analysis, this scenario has first been modeled via the same 

two-sensor network topology, whose dichotomy between harmonic and root/modal nodes 

still exists. Since the prediction of the system's response is performed via undamped mode 

shapes, the damping ratio's variability only affects the accuracy with which the forced- 

response is known, while the £ — u)i arc is unable to transfer any information. This results 

in the incapacity of the Bayesian network to update the prior distribution of £ and reduce 

its inherent uncertainty. As in the case of geometric uncertainty, evidence on any of the 

sensor nodes is sufficient to properly predict the maximum axial stress, while the rest of the 

network is insensitive to the inclusion of this information. Knowledge on the frequency node 

is, therefore, necessary to update the remaining nodes, except for £. Once again, the update 

does not lead to an absolute convergence, even though the updated modal stresses yield 
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modal ratios that are consistent with the corresponding ratios from the forced response. 

The ±1(7 interval for the relative error on Young's modulus and modal stresses shrinks from 

±15% to ±5% when LJ2 is updated with the additional evidence. Because of the small prior 

variance a(E), the worst conditions occur when the evidence on u>2 corresponds to a value 

of E which disagrees strongly with its prior probability distribution so that the evidence is 

given less importance due to a high belief in the prior information itself. Besides this phe- 

nomenon, the linear approximation describing the non-linear relationship between Young's 

modulus and natural frequencies also contributes to the mismatch between true state and 

posterior mean values of the root nodes. This error consequently propagates down to the 

modal stresses as well. 

Prediction accuracy does not improve when more sensors are included in the network, 

as shown in Figure 73. In fact, the addition of two other sensors only adds in topological 

complexity as the maximum stress is already estimated as precisely as possible with one 

gauge. The error 8 of the modal and root nodes also remains unaffected until W2 is updated 

in the fifth evidence scenario. 

The introduction of measurement errors causes the network to fail in successfully pin- 

pointing the true maximum stress with just one measurement. In contrast to the above 

cases, an increase in the number of sensor measurements being infused into the network be- 

comes advantageous in this circumstance, as it steadily decreases the discrepancy between 

predicted and true response. As depicted in Figure 74, the increasing number of sensors 

only affects the harmonic nodes, whereas the uncertainty associated with the posterior prob- 

abilities at the modal and root nodes is exclusively dependent upon a measurement of the 

peak frequency being as accurate as possible. 

Overall, the particular nature of the beam structure reveals an interesting behavior of 

the Bayesian prediction scheme, where harmonic and modal nodes do not exchange knowl- 

edge with one another, thus forming two practically decoupled sub-nets, with the former 

being predicted with satisfactory accuracy and the latter unable to converge. Despite that, 

modal ratios are preserved and in consistent agreement with their forced-response counter- 

parts when frequency and amplitude evidence are accounted for. Furthermore, the network 
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Figure 73:  Beam structure: response prediction in the presence of uncertainty in E and 
£, for a four-gauge Bayesian network. 

50 
 ,_   —, _ ,  10 

^^ 5 

nV 
0 | dp 

0 1 
to to 

-50 * S^ 
-5 

12   3   4   5 
Evidence Scenario No. 

12    3   4   5 
Evidence Scenario No. 

12 3 4 5 
Evidence  Scenario No. 

■H(8)±o(8) 

■ min(S) 

- max(8) 

Figure 74:   Beam structure: response prediction in the presence of measurement errors 
and uncertainty in E and £, for a four-gauge Bayesian network. 
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structure has demonstrated the ability to capture and model satisfactorily non-contributing 

nodes (i.e., £) without exhibiting additional insensitivity to evidence infusion. 

5.3    Three-dimensional Problem: Plate Structure 

To extend the analysis to the three-dimensional case, the same plate structure of Chap- 

ter 3 has been considered, instrumented with eleven strain gauges and subject to a base 

excitation. In this case, the system's response being tracked is in the form of surface strains, 

evaluated along the sensor measurement direction, while the Von Mises equivalent maxi- 

mum strain represents the target quantity to be predicted. Errors associated with test 

measurements, uncertainty in model parameters, as well as the discrepancy in the correla- 

tion between the physical system and its model are all modeled within the network. 

As a representative example, geometric uncertainty has been considered in the form of 

harmonic thickness variations along the plate's length L and width W. These particular 

parameters were utilized because they provide higher sensitivity for the vibratory response 

of the plate structure as compared to other sources of uncertainty. In a reference frame 

with 2-axis perpendicular to the plate's main surfaces and origin coincident with one of its 

vertices, the following thickness tolerances, Azu and Azi, were assigned, respectively, on 

the top and bottom surface: 

A*(x, V) = +\ sin (27r|) + *f sin (2^) (41) 

A*l(*>») - ~\ sin(27r|) - ^sin^) 

where tL and tw represent two Gaussian random variables with zero mean and standard 

deviations equal to 5% of the thickness nominal value 0.125 inches. 

In the first set of results, a four-gauge network was considered in which tL was assumed 

to be the only source of uncertainty together with non-matching correlation between model 

and physical component. Hence, in the absence of measurement errors, the true-strain 

and predicted-strain nodes are effectively connected to their corresponding measured-strain 

nodes by means of equality links. This setup allows to investigate the effect that the linear- 

link approximation has upon the network's ability to close in onto the system's true state as 

a function of evidence. Shown in Figures 75-77 is the dependence of the modal ratios upon 
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tL for the chosen sensors, where essentially only one axe is non-linear. Despite the attempt at 

reducing non-linearities by selecting, when possible, sensors at which the response exhibits 

shallow non-linear trends, the major source of non-linearity is embedded in the estimation 

process itself via the product of modal ratios and measurements. 

The performance of the network with respect to evidence at the measurement nodes is 

illustrated in Figures 78 and 79. In contrast to the desired behavior of the model, the error 

S does not steadily decrease for all nodes with more evidence being infused into the network. 

Such a behavior is the result of fitting non-linear data into a linearized model, basically an 

evidence-induced stiffening effect. As a consequence of this model underfitting, as more 

observations are added, the network loses some of its degrees of freedom, and it becomes 

incapable of explaining the new evidence, hence the rising of non-monotonic trends due 

to apparent conflicting information. Illustrated in Figures 80 and 81 is the case in which 

evidence at the frequency node is included as the last observation. As for the beam structure, 

the frequency-measurement node influences primarily the modal nodes, while the forced- 

response ones are affected mostly by the amplitude-measurement nodes. No significant 

inconsistency arises from its addition, unless the ±la interval for a specific node is already 

quite tight within a few percentage points. In the presence of measurement errors in the 

training data (Figure 82) and the observations, the network becomes more flexible with 

respect to evidence inclusion and, once again, an increasing number of sensors/observations 

becomes beneficial in reducing the extra variability and consistently lowering the relative 

error 5, especially for the harmonic nodes (Figures 83 and 84). 

Another set of results is presented for the 20-node Bayesian network comprising tL 

and tw as root nodes together with five strain gauges. As indicated by Figures 85 and 

86, in spite of the non-linearities affecting its links, the network performs satisfactorily 

as the discrepancy S decreases with the infusion of more and more measurements. It is 

important to note that for the network to capture and properly quantify uncertainty, the 

error introduced by the linear approximation has to be lower than the one associated with 

other sources of variability. If a very low correlation between training data and linear models 

occurs, this results in meaningless cause-effect relationships being established among the 
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nodes, and consequent poor performance of the network. In order to obviate this issue, 

a transformation can be used where harmonic and modal nodes are replaced with their 

logarithms. On the one hand, the transformation eliminates the non-linearities associated 

with the computation of e*- (j = 1,2,...) as well as the dependence of the corresponding 

links upon the training data. On the other hand, however, such a transformation invalidates 

even more the assumption of Gaussian nodes and is itself non-linear. Depicted in Figure 

87, the errors on the maximum strain are compared for two Bayesian networks, with and 

without logarithmic transformation, for the same training data and evidence scenarios. 

Clearly, in this case, no approach is strongly outperforming the other, but the use of the 

logarithm transformation (or other suitable ones) could be strongly beneficial in the presence 

of large non-linearities in the training data to be treated with linear models. Moreover, the 

comparison of 5's can be employed to assess the error introduced by the linearized prediction 

scheme against the transformation-induced non-linearities. 
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Figure 75: Plate structure: data for network training and linear approximation. 
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Figure 76: Plate structure: data for network training and linear approximation. 
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Figure 78: Plate structure: prediction error in the presence of uncertainty in tL and no 
measurement errors, with evidence only at the amplitude measurement nodes of a four- 
gauge Bayesian network. 
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Figure 79: Plate structure: prediction error in the presence of uncertainty in tL and no 
measurement errors, with evidence only at the amplitude measurement nodes of a four- 
gauge Bayesian network. 
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Figure 80: Plate structure: prediction error in the presence of uncertainty in tL and no 
measurement errors, with evidence at the amplitude and frequency measurement nodes of 
a four-gauge Bayesian network. 
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Figure 81: Plate structure: prediction error in the presence of uncertainty in tL and no 
measurement errors, with evidence at the amplitude and frequency measurement nodes of 
a four-gauge Bayesian network. 
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Figure 83: Plate structure: prediction error in the presence of uncertainty in tL and 
measurement errors, with evidence at the amplitude and frequency measurement nodes of 
a four-gauge Bayesian network. 
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Figure 84: Plate structure: prediction error in the presence of uncertainty in tL and 
measurement errors, with evidence at the amplitude and frequency measurement nodes of 
a four-gauge Bayesian network. 
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Figure 86: Plate structure: prediction error in the presence of uncertainty in tL, tw and 
the measurements, with evidence at the amplitude and frequency measurement nodes of a 
five-gauge Bayesian network. 

144 



80 r 

60 - 

40 

20 

„   0 

<«  -20 

-40 

-60 

-80 

-100 

11    T I 

  - Log. transf. 
— No transf. 

Q.           \. 

"Q-^\. 

- "^B —  . 

■ —I 1 
fr 

^S^*  " 

^t^"^    s JfT        s 

^       * 
>r                 / - 

JS^        S w             , 
/ 

s / 
# 

2        3        4        5 
Evidence Scenario No. 
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five-gauge Bayesian network. 

5.4    Discrete-node Bayesian Networks 

The results presented thus far were obtained using a Bayesian network comprised of 

continuous nodes and based upon the following assumptions: 

• All the nodes are Gaussian variables; 

• A node's Conditional Probability Distribution (CPD), describing the statistical depen- 

dency from its parent nodes, is a normal distribution whose mean is a linear function 

of the mean values of the parent nodes, and whose variance is fixed. 

Gaussian nodes were chosen because their use leads to a closed-form solution of the marginal 

probability integrals and requires a lower computational cost as compared to utilizing other 

probability functions to describe the network nodes. Furthermore, other methods in the 

literature have also been successfully developed under the same assumption [29, 30, 107], 

thanks to the possibility of transforming, when desired, a set of non-normal random vari- 

ables into an equivalent set of Gaussian ones via the Rosenblatt or the Nataf transformation 
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[67]. 

Despite the fact that these assumptions are never met (e.g., for the prediction nodes 

alone, each e*. ,k is not a linear combination of its parents and its distribution fails to 

be Gaussian even if its parents were normally distributed), the previous results showed 

a satisfactory performance of the Bayesian inference scheme as long as the node-to-node 

links were not weakened by large approximation error due to excessive non-linearities. Any 

significant non-Gaussian nature of the training data, instead, has not been taken into con- 

sideration in the previous analyses as it was neglected within the training procedure. In fact, 

the expectation-maximization learning algorithm in use within the BNT Gaussian toolbox 

trains the network by matching the first two moments (mean and standard deviation) of 

each node with the corresponding moments of the sample populations, regardless of their 

higher moments, which may still be statistically significant. Therefore, in order to assess 

further the impact of the aforementioned assumptions upon the validity of the results, the 

use of a discrete-node Bayesian network was also investigated for comparison purposes. 

Discrete-node Bayesian networks have both advantages and limitations. On the one 

hand, the discrete-node approach can be applied to any variable, independently of its un- 

derlying probability distribution, and the network's marginal probabilities can be inferred 

exactly (e.g., via the variable elimination algorithm, or by enumeration [77]) if the number 

of nodes is manageable. On the other hand, discretization of a continuous random variable 

inherently affects the level of detail in the results as the statistical analysis can only provide 

information in terms of ranges of possible values. Furthermore, results may be ambiguous 

at times, especially in those situations in which the true value of a continuous variable lies 

close to the border between two adjacent bins. These issues of detail level and result ambi- 

guity could be circumvented by means of a finer domain discretization, under the penalty 

of a growing size of the nodal Conditional Probability Tables (CPT's). 

In the structural problems under investigation, the physical variables (e.g., geometric 

parameters, material properties, or stress field) are continuous in nature. In order to con- 

vert a continuous random variable X into a discrete node, a discretization into N/, states 

(also called bins) ought to be performed.  For each sampled node/variable X comprising 
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the Bayesian network, the statistical results herein presented correspond to a six-bin dis- 

cretization (JVj, = 6), with the bins Xb {b = 1,..., 6) defined as follows: 

xi = (-oo ,  n(X) - 2a(X)\ 

X2 = [l*(X)-2*(X) ,  n(X)-<r(X)} 

x3 = [n(X)-a(X)  ,   ß(X)} 
(42) 

xt = [ß(X)  ,  fi(X)+a(X)} 

x5 = [fx(X)+a(X) ,   n(X) + 2*(X)) 

x6 = [n(X) + 2a(X) ,   oo) 

where /x(.) and <r(.) are, respectively, the mean and the standard-deviation operators applied 

to the sample population of X. It is to be observed that the result of network training is 

independent of the nodes' level of discretization into bins, except, of course, for the size of 

the CPT's. In fact, the conditional probability P(X = x\Y = y, Z = z) of a generic discrete 

node X and its discrete parents, Y and Z, is simply computed as follows: 

P(X = x\Y = v Z = z)   = p(x7x>Y=Vizrz) ryji. -x\i -y,4-z) >(y=j,,z=*) ^ 

^ Number of times X = x, V = y and Z = z in the sample population 
Number of times Y = y and Z = z in the sample population 

where x, y and z represent, respectively, a generic possible bin in which, X, Y and Z can 

be, respectively. Therefore, results for a coarser discretization could be obtained by proper 

combination of corresponding CPT entries and nodal marginal probabilities without having 

to necessarily resort again to network training. 

An important issue to take into consideration in the discrete approach is the case in 

which certain combinations of states for the parents of a child node are never observed 

in the sample population. As a consequence of that, referring to equation (43), the joint 

probability of the parent nodes P(Y = y,Z = z) cannot be defined using the information 

at hand. Such a scenario has a twofold explanation: on the one hand, the given combina- 

tion of states has not been observed yet, but it could still be assumed as possible; on the 

other hand, such a combination cannot ever be observed because it represents an infeasible 

dynamic/vibratory state for the system. Possible solutions to such a situation could be the 

use of a coarser binning, specifying the conditional probability P(X = x\Y = y,Z = z) 

147 



P(X = x*\Y = y,Z = z)= < (44) 

according to some known probability function (e.g., the uniform distribution) for those 

CPT entries otherwise undefined, or introducing a fictitious state xf for the given child 

X, whose conditional probability equals zero or one, respectively, for observed and unob- 

served/infeasible combinations of the parents' states: 

1 if P(Y = y,Z = z) undefined 

0 if P(Y = y,Z = z) defined 

The above definition relies on the fact that the employed statistical algorithm assigns a 

default value of zero to any conditional probability which cannot be computed from the 

training data according to equation (43). Therefore, equation (44) is intended as a possible 

alternative to resolve inconsistencies within a node's CPT. Of course, equation (44) could be 

generalized to a higher number of fictitious states, as long as their conditional probabilities 

consistently sum to one where requested by the definition of probability tables. Since the 

number of such states has no influence whatsoever on the nodes' marginal probabilities 

associated with the real states, but it only results in a larger-scale problem with no gain of 

information, only one fictitious state was added, per node, when needed. 

Either approach could be adopted, each with some repercussions. On the one hand, the 

use of a different binning strategy, of course, causes a change in accuracy and might not 

necessarily resolve the underlying problem, especially when nodes at deeper network levels 

are involved, as more complex dynamic/structural interdependencies may be present. On 

the other hand, the usage of a known, yet arbitrary, probability function to handle undefined 

scenarios introduces an error in the marginal probabilities which spreads throughout all 

the states of the nodes, thus making it difficult to quantify its impact. Furthermore, the 

selection of another probability function will result in different amount and propagation 

of the error, thus calling for its selection in an appropriate fashion. The error associated 

with the introduction of a fictitious state, instead, can be quantified more easily because 

localized on that single state rather than distributed across all the bins, while its marginal 

Probability Mass Function (PMF) value can be discarded because it contains no meaningful 

information. In light of these considerations, the fictitious-bin approach seems to offer a 

simpler interpretation of the results as well as a lower error-wise contamination, and was, 
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therefore, adopted in this study. To account for the fact that the marginal probability- 

associated with an artificial bin carries no meaning, the following normalization of the node 

X's marginal probability mass function has also been incorporated in the analysis: 

p(x=Xi)=p(x=Xi)+'^;~~   ~ (45) P(X = xf) ■ P{X = a) 

Z^1P(X = xi) 
Nb 

where P{X = xf) + £P(X = n) = 1 
t=i 

where x, (i = 1,..., Nb) and xf are, respectively, the real and the fictitious state, while P 

denotes the normalized marginal probability mass function. If, for a given evidence scenario, 

its marginal probability is not null, the presence of an artificial bin, de facto, induces a 

more conservative interpretation of the results, whereas the proportional normalization in 

equation (45) redistributes its probability, and allows for a more consistent comparison with 

other analyses (e.g., a continuous-node Bayesian network) in which no fictitious state may 

be present. 

5.4.1    Uncertainty Quantification via Discrete Nodes 

As an illustrative example, normalized-PMF results for the response inference modeled 

using the discrete-network approach are depicted in Figure 88 in the case of the beam 

structure subject to uncertainty in the test measurements, the modulus of elasticity E 

and the damping ratio £. The network response to evidence at nodes e™ and w™ is in 

agreement with what already observed for the the continuous-node network (Figure 74): 

evidence on node e™ affects exclusively the harmonic nodes, and an observation on w™ 

influences primarily the modal and root nodes, whereas neither one has an impact on £, as 

expected. 

As observed throughout several case studies, the network may not always be capable 

of pinpointing the true states, either because of the chosen binning strategy or actual 

network limitations. On the one hand, the shifting of the bins may be able to better clarify 

certain inconclusive probability distributions according to which no particular state may 

be identified as the most probable. On the other hand, the network may be incapable of 

matching the true states with the highest-probability bins, even though the introduction of 
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evidence skews the probability mass functions towards the true states, thus permitting to 

exclude certain bins which are farther away. 

In order to quantify the level of confidence to be associated with a given response 

estimate, a metric II similar to 5 was chosen for the discrete network as well. For each 

discrete node, IIo and IIj represent the rates of occurrence, respectively, that the bin with 

the highest posterior probability coincides with or is next to the true state. In other wor 

IIo and IIi are defined, respectively, in terms of zero-bin and one-bin distances between 

the highest-probability state and the true one. Illustrated in Figures 89 and 90 are the 

results for the beam and plate structures, where 1000 and 3000 true network states were 

respectively considered, and where observations were introduced, one at a time, first at 

the amplitude-measurement nodes and then at the frequency-measurement node. It can be 

observed that, if not coincident, the nodes' most probable bins are, at least, next to their 

true states in the largest majority of the cases. Therefore, in practical scenarios in which the 

true values of the structure's parameters and response are indeed unknown, a conservative 

prediction of the true states can be done by considering the highest-probability bin together 

with its immediate neighbors, where changes in the domain discretization can be carried 

out in an attempt to improve the confidence level associated with the estimated system's 

response. Finally, the trends shown for IIo in Figures 89 and 90 for the root and modal 

nodes are in agreement with what observed for their continuous counterparts in Figures 

72 and 86. Both networks indeed exhibit similar distributions of sensitivity to evidence 

and perform alike when predicting the states of the nodes in question. This similarity in 

behavior seems to indicate that the effect of evidence depends primarily on the structure 

of the training data (as observed specifically for the beam system) and the topology of the 

network, regardless of how the random nodes are modeled. The quality of the prediction 

at those nodes, however, will depend on bin discretization and linear-approximation error 

for the discrete and the continuous network, respectively. Limitations in the identification 

of the correct true states, respectively as most probable bins or mean values, are also to be 

ascribed to the non-uniqueness of the solution at the root-node level. 
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Figure 89: Beam structure: prediction rate of success n in the presence of only geometric 
uncertainty in L and T, for a four-gauge discrete Bayesian network. 
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measurement nodes of a five-gauge discrete Bayesian network. 
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5.5    Closing the Loop: Bayesian Analysis of Experimental Data 

Thus far, the performance of the network has been tested with respect to simulated 

data. The statistical metric S has been used to quantify how well a randomly-generated 

assigned state of a structure agrees with its Bayesian expected state, as well as to assess 

whether or not convergence to that true state improves and uncertainty reduces as more 

sensor information is made available and infused into the network. 

The next and final step consists of using real experimental data as observations for the 

measurement nodes. For this purpose, the same experimental data analyzed in Chapter 3 

were utilized, where only five out of the eleven sensors (i.e., gauges 1, 3, 5, 7, and 9) were 

employed to construct the 20-node Bayesian network of Figure 69. More specifically, gauges 

located near the plate's root and mid-length region were selected so as to include within 

the analysis different levels of signal-to-noise ratio, while also taking into consideration the 

non-linear behavior of the strain field with respect to the uncertainties modeled at the root 

nodes. Furthermore, given the fact that variations in the plate's geometry (specifically, 

length, width and thickness), as well as in its modulus of elasticity, density and damping 

ratio were observed to generate little or no spread in the modal strain ratios and/or the 

forced strains, only ti and t\y were adopted as independent parameters so that all the modal 

and harmonic nodes in the Bayesian network would be characterized by a meaningful level 

of variability. 

For a specific experiment conducted on the brass plate, results corresponding to the 

first resonance condition are presented in Table 21 and Figures 91-93, where the Gaus- 

sian measurement errors 77 of equation (40) were considered with at = 0.01 and o-w = a 

(a = 0%, 1%, 2%); also, Ae and A^ were chosen to be equal to the maximum values 

observed in the training data for the strain peak amplitudes and frequency, respectively. 

Listed in the table are the results of the correlation analysis for the modeled sensors, where 

gauge 7 has been chosen as reference, and where a frequency-matching-based 20% reduc- 

tion in the nominal value of Young's modulus (Table 4) has been included in an effort to 

improve the model/test correlation. In light of the large range of possible values in the 

material properties of brass [65], this correction appears to be reasonable and can prove 
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to be beneficial when constructing equivalent numerical experiments, since the impact of 

evidence is inversely related to its distance from the prior information within the network. 

The definition of &j (i = 1,3,5,9; j = 7) is given in equation (29), whereas £* (i = 1,3,5,9; 

j = 7) is defined as follows: 

As already illustrated in Figure 28, the non-unitary values of ^ indicate that the measured 

response of the physical system is not always well correlated with the response computed 

analytically. Furthermore, correlation is not the same across the various gauge pairs, thus 

leading to different estimates of the system response, at other non-instrumented locations, 

depending on which sensors are used. As for £ *, their values will depend on the amount 

of error present in the network, as indicated by the tabulated results obtained considering 

a constant error level in the amplitude measurements and varying error JV(0, o-J) associ- 

ated with the frequency measurement. For low error levels, the Bayesian network has less 

freedom to adjust itself and compensate for inconsistent evidence, whereas it is able to 

achieve better correlation between experimental data and analytical information as more 

uncertainty is present in the frequency measurement. This behavior is in agreement with 

what observed previously for the trend of the nodal <5's, with and without measurement 

errors which, de facto, provide the linear network with useful freedom to fit non-linear in- 

formation. Furthermore, in those cases in which the final correlation is deteriorated with 

respect to the nominal case, the network attempts to redistribute it across all sensors, thus 

reducing the response variability across the various pairs of gauges. For the same reasons, 

the correlation for certain sensors does not vary monotonically as more observations are 

introduced because of the inconsistencies for which the network tries to compensate. The 

entire set of measurement evidence, therefore, is not only beneficial, but also necessary to 

guide the network towards a final expected state that agrees better with all the pieces of 

information. 

The specific effect of observations upon the network's nodes is illustrated in Figures 
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91-93, where the posterior expected values are also compared against the structure's nomi- 

nal geometry and response obtained either analytically or estimated through a combination 

with the experimental data. As previously observed, for the independent geometric pa- 

rameters and the modal nodes, evidence is not always capable of univocally matching the 

physical system's true state with their expected values. In the case of actual experimental 

evidence, this problem may be further exacerbated because of modeling limitations and 

more uncertainty being present in the physical system than the one actually captured by 

the equivalent numerical experimentation. On the one hand, in fact, the simple sinusoidal 

variations in thickness, introduced via equation (41), are only one possible way to account 

for the presence of manufacturing-induced geometric uncertainty, which may be distributed 

or concentrated in real components. On the other hand, the same geometric uncertainties 

become a surrogate for other non-modeled sources of uncertainty. In light of these issues, as 

shown in the figures, large deviations between the nominal model and the Bayesian expected 

model may appear, where the final expected states of all the nodes are, however, consistent 

with the experimental observations provided, and lead to a reduction in the variability of 

the maximum-response estimate, as indicated by the results of Table 22. The confidence 

level associated with those expected states is, of course, a function of the amount of error 

embedded in the experimental information itself, whose statistical significance and accuracy 

is weighed against the prior information in the network according to conditional probabil- 

ity theory. As a final note, the network infused with evidence successfully helps explain 

and filter out the variability in the maximum-response estimate which inevitably originates 

from a host of sources of uncertainty such as low signal-to-noise ratios, inaccurate solution 

averaging in high-gradient regions for the strain field, or interpolation errors introduced by 

spectrum analyses. 
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Figure 91:  Brass plate structure: expected values of t£ and t\y in the presence of mea- 
surement errors, for a a five-gauge Bayesian network. 
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Table 21: Correlation H for brass plate based on gauge 7. 

Experiment vs. nominal system 

&7 £37 £57 £97 

0.9111 0.7112 0.5180 0.5509 

Experiment vs. Bayesian network 

Evidence 
Scenario No. Observed Nodes «7 £37 % £97 

1 £7 0.9949 0.9964 0.9970 0.9970 
2 1.0185 1.0105 1.0038 1.0025 
3 -.m  -.m  -.m 

£7 >£1 >£3 1.0693 1.0516 1.2017 1.1566 
4 ^.TTl    -.771    -.771    cm 

£7 '£1 >£3 >£5 1.0393 1.1067 1.2899 1.2431 
5 cm   cm   cm   cm   cm 

£7 '£1 >£3 >£5 '£9 1.0291 1.1169 1.3573 1.2244 
6 (a = 0%) cm ctn  -.771  cm  -.771  . ,771 

£7 )£1 >£3 >£5 >£9 >wl 0.7860 0.7088 0.5753 0.6041 
6 (a = 1%) (-771    (-771    £-771    (-771    -.771    .  ,771 

£7 '£1 >£3 '£5 '£9 'wl 0.8675 0.8285 0.7449 0.7556 
6 (a = 2%) ,-771    (-771    ,-771    -.771    -.771    , ,771 

£7   '£1   >£3   '£5   '£9   'Wl 0.9510 0.9683 0.9970 0.9617 

Table 22: Maximum-response estimation results. 

Estimation via nominal model and experimental data 

i = l      i = 3      i = 5      i = l i = Q 

-M-e™    0.0030    0.0023    0.0017    0.0032       0.0018 
 Si i_ 

Estimation via Bayesian expected states 

a = 0% a = l% a = 2% 

M(£*)M(^)/M(»   < = I 0.0028 0.0025 0.0022 

i = 3 0.0026 0.0025 0.0023 
t = 5 0.0023 0.0023 0.0024 
i = 9 0.0024 0.0024 0.0023 

*K) 0.0027 0.0025 0.0023 
Results corresponding to the 6     evidence scenario. 

160 



5.6    Summary 

The use of a Bayesian network for the inference of the vibratory response of a structure 

has been investigated as a possible means to evaluate the level of confidence that can be 

assigned to a given estimate in the presence of various sources of uncertainty. The approach 

has been tested on two structures, for various sources of uncertainty, and for two different 

types of networks with discrete and Gaussian nodes. In terms of performance, both networks 

behaved similarly, as they both responded comparably to evidence infusion and pinpointed 

the same limitations in predicting certain nodes correctly. There are, however, distinct 

advantages and limitations for each of them. On the one hand, the main strength of the 

discrete-node approach is that it can be applied to any variable, independently of its under- 

lying probability distribution, and marginal probabilities can be inferred exactly. The main 

drawback is that the discretization of a continuous random variable inherently affects the 

level of detail associated with the statistical analysis, since it can only provide information 

in terms of ranges of possible values. Higher precision can be achieved, however, by means 

of a finer domain discretization, under the penalty of a growth in the size of the network. 

On the other hand, a continuous-node Bayesian network is not affected by the problem of 

dimensionality of its conditional probabilities, or the corresponding loss of accuracy due to 

binning. Furthermore, if the nodes are assumed to have linear Gaussian distributions, an 

analytical solution exists for probability marginalization and propagation of evidence, and 

the inference process itself requires a lower computational cost compared to other distri- 

butions. Unfortunately, the more the training data is non-Gaussian, the more difficult it 

may become to extrapolate the information obtained through a Gaussian-node network to 

the actual statistical nature of the physical quantities being predicted (especially in terms 

of variance and higher statistical moments). Moreover, a linear Gaussian network relies on 

the assumption of linearity among its nodes. Of course, the higher the non-linearities, the 

lower the accuracy in the estimated quantities. Throughout the study, an accurate selection 

of the gauge locations was done so as to limit the intrinsic non-linearity in the prediction 

scheme. Other possible measures are to model as nodes suitable transformations of the 

physical quantities, or to divide the domain space of the independent parameters in smaller 
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regions where the linear approximation may perform better. 

Overall, the use of linear Gaussian networks was found to be satisfactory for this particu- 

lar type of inference in spite of the "bending" of its underlying hypotheses. Moreover, its use 

as a statistical surrogate model of the inference scheme permits to account for unobservable 

sources of uncertainty through the parameterization of alternative sources of error. Also, 

through the network, the accuracy of prediction can be statistically assessed via numerical 

experimentation, and a <5-based confidence level can be assigned to each node's estimation 

for any set of available node observations. The effect of evidence infusion has been proven 

to increase the quality of prediction in or without the presence of experiment-based errors, 

where the same error was noticed to become beneficial in helping estimate non-linear quan- 

tities by means of a linear model. The importance of using more test data has also been 

shown together with the diverse impacts that amplitude and frequency measurements have 

on network updating. The former may be sufficient to predict successfully the maximum 

response, but the latter appears to be necessary to update the system's model to a configu- 

ration consistent with the true physical component, thus improving upon their correlation. 

In conclusion, for the purpose of statistically assessing the estimation of a system's 

vibratory response, experimental knowledge and model information have been integrated 

within a scheme which has demonstrated to work satisfactorily for the tested sources of 

uncertainty under the given set of network assumptions. 
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CHAPTER VI 

CONCLUDING REMARKS 

6.1     Summary of Research 

The objective of this research has been to quantify the level of accuracy within a standard 

model-based estimation scheme for the calculation of the maximum vibratory response in 

dynamic structures. For any given physical system being investigated, this inference tech- 

nique relies on two essential contributors: an analytical model of the system and actual 

experimentation, both of which are inevitably affected by uncertainties and errors in their 

results. In order to characterize the statistical interaction between these two contribu- 

tors and assess the predictive accuracy of the estimation procedure, a structured statistical 

framework has been developed by means of a Bayesian-network representation of the infer- 

ence scheme itself. This approach allows for multi-directional propagation and updating of 

uncertainty, as well as knowledge infusion from available sources of information at various 

levels of the analysis. In order to construct the Bayesian network, a simulated-experiment 

environment equivalent to the procedures used for actual systems was created, where equiv- 

alency in this setting implies comparable levels of results' variability and correlation between 

the physical system and its model. Sensitivity analyses conducted through direct propa- 

gation of uncertainty were utilized to identify key uncertainty sources to be included in 

the network, whether they were the true causes of the variability observed in the actual 

experiments or a suitable set of surrogate explanatory ones. Finally, uncertainty sources as- 

sociated with system/model correlation, model parameters, and measurement sensors were 

modeled probabilistically and integrated in a unified fashion within the network. 

The methodology was tested on two structures, a one-dimensional beam and a three- 

dimensional plate, with results that proved to be promising in light of the assumptions 

embedded in the process. In fact, in the presence of a limited set of actual test data upon 

which it may be difficult to draw strong statistical conclusions, the developed Bayesian 
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approach was shown to provide a means to quantify comprehensively the uncertainty in 

the response estimates based simply upon additional simulated experiments. The level of 

confidence in the estimated quantities can be assessed and quantified more satisfactorily 

upon the inclusion of real information from the sensors, a task that the Bayesian-network 

approach allows to be performed coherently. 

6.2    Conclusions 

The scope of this work lies within the realm of methodologies employed in building 

analytical models for the purpose of system performance prediction. Among the host of 

potential models, two main distinct categories can be identified: physics-based models and 

data-driven ones. On the one hand, the former are built upon first principles, and their 

verification and validation are usually executed as a separate task of reconciliation with 

appropriate test data. On the other hand, the latter consist of data-based meta-models 

which may not be derived from physics-based considerations. This second type of system 

representation lends itself easily to statistical validation, assuming that a large set of rele- 

vant data is available, which might or might not be the case. 

In the presence of these distinct engineering approaches, a need has been identified for a 

way to integrate experimental and model information capable of addressing the intermedi- 

ate scenarios and quantifying any residual uncertainty, thus combining the best features of 

both approaches by relying on the physics-based models and yet allowing for a statistically 

rigorous incorporation of the evidence into the model. As indicated by the literature re- 

view, work has already been made in the field of system identification, in which the problem 

of model-to-data correlation has been addressed both in a deterministic and a statistical 

fashion. In this work, the use of Bayesian networks has been investigated as a possible 

means to bridge the gap between physics-based and data-driven approaches and applied to 

a particular structural-dynamics application where model and experimental data are used 

concomitantly for the purpose of response prediction. In this context, the Bayesian network 

itself can be viewed as a statistical surrogate model of the prediction scheme, relating the 

uncertainty embedded in the estimates to the changing level of available knowledge. 
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The high complexity of certain structural systems makes the identification and charac- 

terization of the sources of uncertainty embedded in them an involved task which may result 

in a rather large state space to be modeled within a statistical framework such as a Bayesian 

network. Therefore, sensitivity studies and network Gaussian-linear statistics were adopted 

to address the dimensionality issue as well as manage the computational burden. 

Sensitivity analysis was used to downsize the Bayesian network to its essential elements 

by means of pinpointing key explanatory factors of uncertainty and discarding quantities 

responsible for weak causal relationships. Case studies on these scenarios demonstrated that 

the presence of such quantities causes unnecessary additional topological complexity and 

may hamper the effect of evidence infusion because of localized insensitivity of the given 

network. 

The assumption of linear Gaussian cause-effect relationships permits, instead, to solve 

for uncertainty quantification in closed form, with consequent computational savings. As 

with any modeling technique, however, the analytical simplifications do bound the range 

of applicability and validity for the proposed framework. More specifically, it may become 

impossible to model non-linearities using a linear network if the noise level introduced by 

the linearization process and due to underfitting issues outweighs the impact of any other 

uncertainty source; or the quantities being modeled may be highly non-Gaussian so that the 

first two statistical moments become insufficient to fully characterize their probabilistic na- 

ture. This loss of accuracy and information could be significantly reduced by appropriately 

transforming the original variables, derived from physics-based considerations, and conse- 

quently using the results of these transformations to construct the Bayesian network. As an 

example, the logarithmic transformation was suggested because it eliminates the source of 

non-linearity from the estimation product formula, and may prove beneficial if the gain in 

accuracy exceeds the consequent loss of probabilistic information due to treating the newly 

log-transformed quantities as Gaussian random variables. The use of other transformations 

(e.g., the Rosenblatt transformation or variations of it) could be envisioned to address this 

last issue. 
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The effect of evidence infusion led to the discovery of interesting behaviors of the net- 

work. Evidence in the form of peak frequency and peak amplitudes was chosen for this 

type of model-based response prediction in accordance with the existing industrial practice. 

The effectiveness of the propagation of evidence at a node was observed to be dependent on 

two important factors: the causal strength of connecting links, and the level of separation 

between the observed node and a given queried one. As a result of this evidence attenua- 

tion, both pieces of measured information on peak frequency and peak response amplitudes 

were found to be essential for a satisfactory update of the entire network. Furthermore, 

even with multiple inclusions of evidence, the network was not always able to pinpoint the 

assumed true state of all the nodes, even though its updated state was indeed consistent 

with the infused information. This behavior is deemed to originate primarily from the issue 

of solution non-uniqueness typically encountered when addressing inverse problems. 

6.3    Future Work 

In its present form, the proposed methodology has shown potential for a consistent and 

coherent statistical integration of various sources of uncertainty and information. Future 

endeavors should be directed towards addressing its limitations and relaxing the embedded 

assumptions so as to extend the range of applicability and improve the quantification of 

uncertainty. More specifically, important directions for future research are: 

• To inspect further the use of variable transformations and assess them in terms of 

residual non-linearities in the model and nature of the transformed quantities, whose 

probabilistic interpretation may become more difficult; 

• To address the problem of solution non-uniqueness, for which task additional sources 

of information ought to be identified and suitably integrated within the current net- 

work topology. The search for additional evidence may call for a concomitant use of 

numerical results and observations associated with different resonance conditions; 

To investigate the potential use of the developed statistical framework for model 

updating, with the understanding that some of the uncertainties modeled within the 
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network may be in substitution of unobservable ones; 

• To extend the current approach to those scenarios in which more than one mode shape 

contributes to the forced response in the frequency range of interest. This is the case 

for cyclic structures characterized by the existence of double modes. A question 

is raised as to whether the coefficients of modal participation should be computed 

separately or included within the Bayesian network as additional random variables, 

with consequent need for other evidence; 

• To automate the sensitivity analysis and the selection of the gauges to be included in 

the network for a possible online implementation within current industry practices. 

For this purpose, a database of ad hoc simulated experiments may be needed to 

reduce the long computational time associated with designs of experiments on complex 

systems. Alternatively, as already suggested in the literature, generic databases could 

be generated together with appropriate scaling functions to link them to the specific 

test/in-field conditions of interest; 

• To explore the inclusion of more exhaustive models of the instrumentation-related 

uncertainties (e.g., acquisition and data-processing errors) so as to account for them as 

individual interacting entities rather than condensing them into a single measurement 

node per sensor. This could lead to potential usages of the information acquired 

through this process for subsequent test setup optimization; and 

• To assess the proposed Bayesian response prediction scheme in the case of turbine 

engine blades as well as other structures with more complex geometry. 

In tackling these and other interesting research ideas, however, attention is to be given to 

the potential issues of network increasing complexity and higher demand for more pieces 

of evidence, which ought to be statistically uncorrelated so as not to bias the Bayesian 

inference process. 
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